Study of glomerular permselectivity for proteins of the glomerular basement membrane using a dialyzer model. 1993

Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
Third Department of Internal Medicine, Okayama University Medical School, Japan.

The glomerular basement membrane (GBM) is considered to regulate glomerular permselectivity for proteins by acting as both size barrier and charge barrier. Since heparan sulfate-proteoglycan (HS-PG), which forms the charge barrier of GBM, contains a sulfonic acid, we made membranes with various degrees of negative charge models of GBM by addition of sulfonic acid to ethylene vinyl alcohol (EVAL) membranes. A high-resolution scanning electron-microscopic study revealed no ultrastructural alterations after adding sulfonic acid to EVAL membranes. Both neutrally and negatively charged membranes had porous structures in the inner surface of the membranes. The interrelation between the two actions of size and charge of GBM was studied using special dialyzers with various degrees of negative charge and different pore sizes. The negatively charged membranes adsorbed proteins with positive charge and repulsed proteins with negative charge. The degrees of adsorption and repulsion were weaker in membranes with larger pores and were stronger for proteins with larger molecular weights. The permselectivity for proteins of a charged membrane depends largely upon the interrelation between the pore size of the membrane and the size of the proteins. It is, therefore, suggested that the presence of a size barrier in GBM is necessary for the charge barrier to effectively exert glomerular permselectivity for proteins. Our study may lead to the development of a dialyzer with higher permselectivity by adding sulfonic acid rather than conventional dialyzers.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D013455 Sulfur An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine. Sulfur-16,Sulfur 16

Related Publications

Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
July 2007, The American journal of pathology,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
July 1978, Microvascular research,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
May 2012, Experimental cell research,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
December 2011, The journal of physical chemistry letters,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
January 1980, Renal physiology,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
August 1997, Biochimica et biophysica acta,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
April 1988, Pediatric nephrology (Berlin, Germany),
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
August 2021, Advanced healthcare materials,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
March 1970, The American journal of pathology,
Y Nagake, and H Makino, and K Hironaka, and N Kashihara, and Z Ota
January 1971, Pathobiology annual,
Copied contents to your clipboard!