Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). 1994

P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
Department of Biomedical Sciences and Oncology, University of Torino Medical School, Italy.

The tyrosine kinase encoded by the MET proto-oncogene (p190MET) is the receptor for Hepatocyte Growth Factor/Scatter Factor (HGF/SF). Previous work has shown that autophosphorylation of p190MET enhances its enzymatic activity and that the major phosphorylation site is Tyr1235, located in the catalytic domain. This residue is part of a 'three tyrosine' motif, including Tyr1230, Tyr1234, and Tyr1235, conserved in several other receptor kinases. We studied the role of these tyrosines in the positive regulation of the p190MET kinase by site-directed mutagenesis. Substitution of either Tyr1235 or Tyr1234 with phenylalanine severely reduced the in vitro kinase activity toward exogenous substrates. Kinetic experiments showed that the residual activity of these mutants could still be enhanced by autophosphorylation. Phosphopeptide mapping indicated that, in the absence of Tyr1235, Tyr1234 is phosphorylated. Only the replacement of both Tyr1234 and Tyr1235 yielded a mutant which completely lost the ability to be activated by autophosphorylation. In stable transfectants expressing the HGF/SF receptor with single substitution of either Tyr1234 or Tyr1235 the response to HGF/SF was impaired. The ligand did not induce tyrosine phosphorylation of the receptor nor stimulated chemotaxis. These data show that Tyr1234 and Tyr1235 are critical for the activation of the HGF/SF receptor kinase both in vitro and in response to the ligand in intact cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
April 1991, Oncogene,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
April 1991, Molecular and cellular biology,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
December 1991, Molecular and cellular biology,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
August 1991, The Journal of biological chemistry,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
November 1989, Oncogene,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
August 2005, Bioorganic & medicinal chemistry,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
June 1996, Nature,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
January 1999, Pathology oncology research : POR,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
June 1994, Oncogene,
P Longati, and A Bardelli, and C Ponzetto, and L Naldini, and P M Comoglio
August 1992, Science (New York, N.Y.),
Copied contents to your clipboard!