Drug-induced lysosomal storage of sulfated glycosaminoglycans. Studies on the underlying structure-activity relationships. 1993

K Handrock, and R Lüllmann-Rauch, and R D Vogt
Department of Anatomy, University of Kiel, Germany.

Some immunomodulatory drugs have previously been shown to induce lysosomal storage of sulfated glycosaminoglycans (sGAG) in intact organisms and cultured cells. These compounds consist of a planary aromatic ring system and two symmetric side chains each carrying a protonizable nitrogen. The purpose of this study was to test a larger collection of such compounds for their potencies to induce lysosomal storage of sGAG in cultured fibroblasts of rat cornea. The cells were exposed (72 h) to various compounds differing with respect to the aromatic ring system or the side chains. Lysosomal sGAG-storage was demonstrated by selective cytochemical staining with cuprolinic blue. The threshold concentration, i.e., the concentration necessary to induce cuprolinic blue-positive cytoplasmic inclusions in at least 1% of the cells, was determined for each compound. The threshold concentrations were distributed over a range of 0.3-30 microM. It should be emphasized that the threshold concentration of a given compound is not a constant, but depends on the volume of cell culture medium per surface area of cell monolayer, since the lysosomal accumulation lowers the initial drug concentration in the medium. If the ratio of medium volume:cell monolayer surface is increased as compared with standard cell culture conditions, the threshold concentration will be lowered. The compounds were ranked according to their threshold concentrations as determined under standard conditions. The following conclusions can be drawn from the ranking: the type of the central aromatic ring system and the distance between the ring system and the protonizable nitrogen atoms of the side chains influence the potency to induce lysosomal sGAG-storage. Regarding the ring system, the potency decreases as follows: acridine approximately anthrachinone > fenfluorenone approximately fenfluorene > xanthenone; xanthene > dibenzofuran approximately dibenzothiophene. In intact organisms, these structure-activity relationships may be superimposed by drug metabolism and pharmacokinetic factors.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Handrock, and R Lüllmann-Rauch, and R D Vogt
January 1991, Virchows Archiv. B, Cell pathology including molecular pathology,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
December 1996, General pharmacology,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
January 1996, Archives of toxicology,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
December 1987, Cell and tissue research,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
October 1994, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
January 1979, Frontiers of biology,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
October 2001, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
K Handrock, and R Lüllmann-Rauch, and R D Vogt
August 2018, International journal of biological macromolecules,
Copied contents to your clipboard!