Inhibition of splenic macrophage tumor necrosis factor alpha secretion in vivo by antilipopolysaccharide monoclonal antibodies. 1994

R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
Department of Surgery, University of Minnesota, Minneapolis.

OBJECTIVE This study tried to determine whether administration of antilipopolysaccharide (LPS) murine monoclonal antibody (mAb) 2A3 to mice was associated with (1) protective capacity during experimental gram-negative bacterial sepsis, and (2) inhibition of tumor necrosis factor alpha (TNF-alpha) secretion in the systemic circulation and at the tissue level during experimental infection. METHODS Mice received an initial intravenous injection of either saline or 100 micrograms of anti-LPS mAb 2A3, and 1 hour later underwent intraperitoneal inoculation of viable Escherichia coli 0111:B4. Mortality was assessed daily for 7 days. Separate groups of mice were treated similarly and plasma TNF-alpha concentrations were determined from blood samples obtained at 1, 3, 6, 10, and 16 hours after infection by enzyme-linked immunosorbent assay. Concurrently, splenocytes harvested from animals 3, 10, and 16 hours after infection were incubated in culture ex vivo and supernatant TNF-alpha levels were determined. RESULTS Pretreatment with anti-LPS mAb 2A3 prior to an intraperitoneal challenge of live E coli 0111:B4 was associated with the following: (1) significant protective capacity (100% vs 0% mortality, P < .001); (2) inhibition of plasma TNF-alpha levels 16 hours after infection (1257 +/- 323 pg/mL vs 292 +/- 254 pg/mL, P < .001); and (3) abrogation of TNF-alpha secretion derived from splenic macrophages isolated 16 hours after bacterial challenge (229 +/- 12 pg/mL vs 107 +/- 48 pg/mL, P < .05). CONCLUSIONS These results strongly support the contention that inhibition of LPS-induced TNF-alpha secretion at both the tissue and systemic levels is a key mechanism by which anti-LPS mAbs provide protection during gram-negative bacterial peritonitis. We believe that in vivo monitoring of macrophage cytokine secretion will be critical for elucidating the precise role of a variety of mediators in the pathogenesis of gram-negative bacterial sepsis.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D010538 Peritonitis INFLAMMATION of the PERITONEUM lining the ABDOMINAL CAVITY as the result of infectious, autoimmune, or chemical processes. Primary peritonitis is due to infection of the PERITONEAL CAVITY via hematogenous or lymphatic spread and without intra-abdominal source. Secondary peritonitis arises from the ABDOMINAL CAVITY itself through RUPTURE or ABSCESS of intra-abdominal organs. Primary Peritonitis,Secondary Peritonitis,Peritonitis, Primary,Peritonitis, Secondary
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
July 1994, Immunology letters,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
August 1998, Science (New York, N.Y.),
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
May 1990, Cytokine,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
May 1992, The Journal of infectious diseases,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
September 1991, The Journal of clinical investigation,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
January 1992, Anticancer research,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
April 1993, Lymphokine and cytokine research,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
January 1993, Journal of biological regulators and homeostatic agents,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
January 1999, Seminars in thrombosis and hemostasis,
R J Battafarano, and R S Burd, and K M Kurrelmeyer, and C A Ratz, and D L Dunn
January 1990, International immunology,
Copied contents to your clipboard!