Effects of atrial natriuretic peptide and nitroprusside on isolated pulmonary resistance and conduit arteries from rats with pulmonary hypertension. 1993

J C Wanstall, and J S Thompson, and A H Morice
Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia.

1. The relaxant effects of atrial natriuretic peptide (ANP) and nitroprusside were studied on prostaglandin F2 alpha (PGF2 alpha)-contracted preparations of pulmonary resistance vessels (internal diameter 200-500 microns) and main pulmonary arteries taken from rats with pulmonary hypertension induced by monocrotaline (105 mg kg-1, s.c., 4 weeks previously). Control rats received saline. 2. In preparations from monocrotaline-treated rats, the potencies (negative log EC50) of ANP on resistance vessels (8.45) and main pulmonary arteries (8.25) were similar to those obtained in vessels from control rats (8.78 and 8.53 respectively), whereas those of nitroprusside were significantly less than in controls in both resistance vessels (7.13 compared with 7.63 in controls; three fold decrease in potency) and main pulmonary arteries (6.92 compared with 8.17 in controls; 18 fold decrease in potency). 3. On pulmonary resistance vessels from monocrotaline-treated rats, the maximum relaxant responses to ANP and nitroprusside, and also to pinacidil, were increased compared with controls, and reversal of the PGF2 alpha-induced contraction by these drugs was greater than 100%. In contrast, on main pulmonary arteries from monocrotaline-treated rats, the maximum relaxations to ANP and nitroprusside were not increased relative to controls, and reversal of PGF2 alpha was not greater than 100%. 4. Since the high potency of ANP on pulmonary resistance and conduit arteries is retained in vessels from rats with pulmonary hypertension, whether induced by monocrotaline (this study) or by chronic hypoxia (previous findings), it is postulated that elevation of plasma levels of ANP by use of drugs that inhibit the breakdown of this endogenous peptide, may be one approach to the pharmacological treatment of pulmonary hypertension.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D008297 Male Males
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation
D015237 Dinoprost A naturally occurring prostaglandin that has oxytocic, luteolytic, and abortifacient activities. Due to its vasocontractile properties, the compound has a variety of other biological actions. PGF2,PGF2alpha,Prostaglandin F2,Prostaglandin F2alpha,9alpha,11beta-PGF2,Enzaprost F,Estrofan,PGF2 alpha,Prostaglandin F2 alpha,9alpha,11beta PGF2,F2 alpha, Prostaglandin,F2alpha, Prostaglandin,alpha, PGF2
D016686 Monocrotaline A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Monocrotaline Hydrochloride (13alpha,14alpha)-Isomer,Monocrotaline, (all-xi)-Isomer
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

J C Wanstall, and J S Thompson, and A H Morice
August 1989, British journal of pharmacology,
J C Wanstall, and J S Thompson, and A H Morice
September 1997, The European respiratory journal,
J C Wanstall, and J S Thompson, and A H Morice
December 2001, Virchows Archiv : an international journal of pathology,
J C Wanstall, and J S Thompson, and A H Morice
September 1990, The European respiratory journal,
J C Wanstall, and J S Thompson, and A H Morice
September 1991, Journal of applied physiology (Bethesda, Md. : 1985),
J C Wanstall, and J S Thompson, and A H Morice
August 1994, The Journal of veterinary medical science,
J C Wanstall, and J S Thompson, and A H Morice
September 1991, Clinical science (London, England : 1979),
J C Wanstall, and J S Thompson, and A H Morice
November 1988, Acta physiologica Scandinavica,
J C Wanstall, and J S Thompson, and A H Morice
January 1988, Transactions of the Association of American Physicians,
Copied contents to your clipboard!