The effect of increased crypt cell proliferation on the activity and subcellular localization of esterases and alkaline phosphatase in the rat small intestine. 1977

J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard

The activity and ultrastructural localization of alkaline phosphatase and esterase has been studied in normal rat intestine and after the increased crypt cell proliferation that occurs during recovery after 400 rad X-irradiation. Alkaline phosphatase activity is not present in crypt cells of normal intestine, but becomes apparent after the cell has migrated on to the villus. The enzyme is localized in the microvilli, along the lateral cell membranes and in dense bodies. Its activity increases 10 to 15-fold from the base to the tip of the villus. Morphometric analysis of the cell structures where this enzyme is localized reveals no marked changes in their relative proportions during crypt cell development. The expansion of the proliferative cell compartment along the whole length of the crypt which occurs during recovery after irradiation (72 hr after 400 rad X-irradiation) results in a marked reduction of alkaline phosphatase activity in the lower 10-15 cell positions at the base of the villus. During subsequent migration of these cells, the activity increases with cell age but normal values are not attained. From a morphometric analysis it was found that the ultrastructural development is similar to that in controls. These results suggest that during cell maturation, normal values for alkaline phosphatase activity are only attained after 10-12 hr period of maturation in a non-proliferative state and only after the cell has migrated on to the functional villus compartment. In normal intestine, esterase activity shows a 3-fold increase from the bottom to the tip of the crypt and 3 to 4-fold increase during migration up to the middle of the villus. Enzyme activity is localized in the endoplasmic reticulum, the dense bodies and the perinuclear space. Morphometric analyses reveal a 2 to 3-fold increase in the absolute size of these subcellular compartments during crypt cell differentiation and a 2-fold increase at the crypt-villus junction. The relative sizes increase 1-5-fold during crypt cell differentiation and at the time of transition of the cells on to the villus. Increased crypt cell proliferation after irradiation leads to a marked decrease in esterase activity both in crypts and villi. Morphometric analyses of electron micrographs indicate that these changes in activity are not related to any changes in the subcellular structures in which the enzyme is localized. It appears that the normal development of esterase activity depends both on the functional state of the cell and its localization in the crypt or villus.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.

Related Publications

J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
March 1975, Cancer research,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
June 1979, Singapore medical journal,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
January 1991, Journal of pineal research,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
January 1979, Digestion,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
November 1965, Biochemische Zeitschrift,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
November 1998, The Journal of nutrition,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
June 1994, Experimental cell research,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
January 1968, Patologia polska,
J M Van Dongen, and J Kooyman, and W J Visser, and S J Holt, and H Galjaard
January 1972, Enzyme,
Copied contents to your clipboard!