Structure-activity relationships of serotonin transport: relevance to nontricyclic antidepressant interactions. 1993

A S Chang, and S M Chang, and D M Starnes
Center for Biotechnology, Baylor College of Medicine, The Woodlands, TX 77381.

A transfectant cell model was used to examine the structure-activity relationships of serotonin (5-hydroxytryptamine, 5-HT) transport. The findings suggest that 5-HT interacts largely with nonpolar and sterically-confining environments on the transport system, and that a particular spatial coordination of the amino and phenyl groups (separated by an alkyl backbone) is important for transport interaction. Molecular modelling analyses revealed that this motif is also present in the structures of several nontricyclic antidepressants and specific inhibitors of 5-HT transport, as well as adrenergic agents which also possess 5-HT transport-inhibitory activities. While this amino-phenyl coordination motif seems to be a necessary structural requisite for transport interaction, and therefore likely to be part of the transport pharmacophore, additional phenyl rings present in some of the nontricyclic antidepressants may help to account for their relatively higher affinities in 5-HT transport interaction.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000928 Antidepressive Agents Mood-stimulating drugs used primarily in the treatment of affective disorders and related conditions. Several MONOAMINE OXIDASE INHIBITORS are useful as antidepressants apparently as a long-term consequence of their modulation of catecholamine levels. The tricyclic compounds useful as antidepressive agents (ANTIDEPRESSIVE AGENTS, TRICYCLIC) also appear to act through brain catecholamine systems. A third group (ANTIDEPRESSIVE AGENTS, SECOND-GENERATION) is a diverse group of drugs including some that act specifically on serotonergic systems. Antidepressant,Antidepressant Drug,Antidepressant Medication,Antidepressants,Antidepressive Agent,Thymoanaleptic,Thymoanaleptics,Thymoleptic,Thymoleptics,Antidepressant Drugs,Agent, Antidepressive,Drug, Antidepressant,Medication, Antidepressant
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

A S Chang, and S M Chang, and D M Starnes
August 1980, Biochemical pharmacology,
A S Chang, and S M Chang, and D M Starnes
June 1978, Annals of the New York Academy of Sciences,
A S Chang, and S M Chang, and D M Starnes
September 1990, The Journal of nervous and mental disease,
A S Chang, and S M Chang, and D M Starnes
January 1996, The Journal of clinical psychiatry,
A S Chang, and S M Chang, and D M Starnes
January 1982, Advances in biochemical psychopharmacology,
A S Chang, and S M Chang, and D M Starnes
April 1976, The Journal of organic chemistry,
A S Chang, and S M Chang, and D M Starnes
January 1985, Research communications in chemical pathology and pharmacology,
A S Chang, and S M Chang, and D M Starnes
March 1983, Journal of neurochemistry,
A S Chang, and S M Chang, and D M Starnes
May 2009, Medicinal chemistry (Shariqah (United Arab Emirates)),
Copied contents to your clipboard!