New major histocompatibility complex genes. 1993

B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
Department of Clinical Immunology, Royal Perth Hospital, Western Australia.

The MHC is a region of some 4 megabases that has been studied intensively owing to the large number of diseases that are associated with susceptibility genes within this region of the genome. The total number of genes located within the MHC is now approximately 100, but more can be predicted. Recently identified genes within the MHC include PERB6, a large gene producing multiple transcripts located between HLA-B and TNF, and PERB1, a member of the protein tyrosine kinase-gene family. PERB6 was identified by YAC probing of tissue blots, while PERB1 was identified by genomic sequencing.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D009157 Myasthenia Gravis A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006239 Haplotypes The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX. Haplotype
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal

Related Publications

B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
July 1994, Behring Institute Mitteilungen,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
January 1990, Journal of immunogenetics,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
April 1982, Cell,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
January 1983, Cold Spring Harbor symposia on quantitative biology,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
January 2001, Advances in experimental medicine and biology,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
January 1989, Science (New York, N.Y.),
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
April 1999, Immunology today,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
January 1995, Developmental and comparative immunology,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
December 1993, Current opinion in genetics & development,
B Marshall, and C Leelayuwat, and M A Degli-Esposti, and M Pinelli, and L J Abraham, and R L Dawkins
February 1992, The Journal of the Florida Medical Association,
Copied contents to your clipboard!