Regulated and constitutive secretion of distinct molecular forms of acetylcholinesterase from PC12 cells. 1993

E S Schweitzer
Department of Anatomy and Cell Biology, UCLA Medical School.

PC12 cells secrete the enzyme acetylcholinesterase (AChE) while at rest, and increase the overall rate of this secretion 2-fold upon depolarization. This behavior is different from the release of other markers by the constitutive or regulated secretory pathways in PC12 cells. Both the resting and stimulated release of AChE are unchanged after treatment with a membrane-impermeable esterase inhibitor, demonstrating that it represents true secretion and not shedding from the cell surface. The stimulation release of AChE is Ca(2+)-dependent, while the unstimulated release is not. Analysis of the molecular forms of AChE secreted by PC12 cells indicates that the release of AChE actually involves two concurrent but independent secretory processes, and that the G4 form of the enzyme is secreted constitutively, while both the G2 and G4 forms are secreted in a regulated manner, presumably from regulated secretory vesicles. Compared with other regulated secretory proteins, a much smaller fraction of cellular AChE is secreted, and the intracellular localization of this enzyme differs from that of other regulated secretory proteins. The demonstration that a cell line that exhibits regulated secretion of acetylcholine (ACh) is also capable of regulated secretion of AChE provides additional evidence for the existence of multiple regulated secretory pathways within a single cell. Moreover, there appears to be a selective packaging of different molecular forms of AChE into the regulated versus the constitutive secretory pathway. Both the specificity of sorting of AChE and the regulation of its secretion suggest that AChE may play a more dynamic role in synaptic function than has been recognized previously.

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016716 PC12 Cells A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation. Pheochromocytoma Cell Line,Cell Line, Pheochromocytoma,Cell Lines, Pheochromocytoma,PC12 Cell,Pheochromocytoma Cell Lines

Related Publications

E S Schweitzer
October 2002, Annals of the New York Academy of Sciences,
E S Schweitzer
September 2007, Current protocols in cell biology,
E S Schweitzer
January 1987, Annual review of cell biology,
E S Schweitzer
October 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Schweitzer
November 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Schweitzer
January 1995, Cold Spring Harbor symposia on quantitative biology,
E S Schweitzer
January 1986, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
Copied contents to your clipboard!