Dopamine is taken up from the circulation by, and released from, local noradrenergic varicose axon terminals in zona glomerulosa of the rat: a neurochemical and immunocytochemical study. 1993

E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest.

The effect of supramaximal electric field stimulation on [3H]dopamine (DA) release by rat adrenal capsule-glomerulosa preparations was studied using a micro-volume perfusion system. When the tissues were preloaded with [3H]DA, a considerable amount of [3H]DA and [3H]noradrenaline (NA) were released in response to field stimuli. Reserpinization, calcium removal or tetrodotoxin blocking of Na+ influx all completely inhibited the stimulation-evoked release of DA/NA, indicating that the radioactivity released is of neuronal and vesicular origin. In the adrenal cortex, a substantial proportion of tyrosine hydroxylase and dopamine-beta-hydroxylase immunoreactive nerve fibres and varicosities were observed around the zona glomerulosa. DA-containing nerves were not seen in the adrenal cortex; however, the same immunocytochemical procedures clearly demonstrated dopaminergic nerve cells and fibres in the substantia nigra and the striatum respectively, and cells of the adrenal medulla. Like the NA release from noradrenergic varicosities in the zona glomerulosa, the DA release from noradrenergic endings is not subject to negative feedback modulation through DA2 receptors since apomorphine, a DA2-receptor agonist, and sulpiride, a selective DA2-receptor antagonist, failed to affect the release. After in-vivo i.v. administration of [3H]DA, the glomerulosa content of DA and NA and the in-vitro release of [3H]DA and [3H]NA of zona glomerulosa both increased, indicating that the local varicose axon terminals were able to accumulate DA from the circulation, convert it into NA and release it in response to neural activity. This local arrangement of noradrenergic axon terminals, able to take up DA from the circulation and release it or convert it into NA, provides the possibility of a fine tuning of local circulation and aldosterone synthesis in the zona glomerulosa.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009424 Nervous System Physiological Phenomena Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM. Nervous System Physiologic Processes,Nervous System Physiological Processes,Nervous System Physiology,Nervous System Physiological Concepts,Nervous System Physiological Phenomenon,Nervous System Physiological Process,Physiology, Nervous System,System Physiology, Nervous
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
July 1985, Journal of neurochemistry,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
September 1990, Journal of neurochemistry,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
March 1980, Brain research,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
March 1998, The Journal of endocrinology,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
April 1981, Biochemical and biophysical research communications,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
December 1986, Neuroscience letters,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
November 1991, Brain research,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
December 1998, Neurochemical research,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
September 1977, Brain research,
E S Vizi, and I E Tóth, and E Orsó, and K S Szalay, and D Szabó, and M Baranyi, and G P Vinson
January 2007, Brain research,
Copied contents to your clipboard!