Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. 1993

P Jourdon, and D Feuvray
Laboratoire de Physiologie Cellulaire, URA CNRS 1121, Université Paris-Sud, Orsay, France.

1. The whole-cell voltage-clamp technique was applied to ventricular myocytes isolated from normal and streptozotocin-induced diabetic rat hearts to investigate the contribution of the calcium current and of the calcium-independent potassium currents to diabetes-induced alterations of the action potential. 2. In single calcium-tolerant isolated myocytes diabetes induced a lengthening of the action potential similar to that previously described in intact ventricular muscles. 3. Only L-type calcium current was present both in normal and diabetic cells. Inactivation of ICa was described in both preparations by two exponentials, whose time constants were not modified by diabetes. 4. Calcium current density-voltage relationships and steady-state inactivation curves were not significantly affected by diabetes. 5. Potassium background inward rectifier current was not modified by diabetes. 6. Calcium-independent outward potassium current inactivated, in both cell types, according to a biexponential process whose time constants were not affected by diabetes. 7. The transient outward potassium current density was significantly reduced by diabetes whereas neither the voltage dependence of the inactivation nor the time dependence of recovery from inactivation was modified. 8. A 4-aminopyridine-insensitive potassium current was also reduced by diabetes. 9. Our results show that in isolated ventricular myocytes the lengthening of the action potential induced by diabetes results mainly from a decrease of the transmembrane calcium-independent potassium permeability.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

P Jourdon, and D Feuvray
October 1997, The American journal of physiology,
P Jourdon, and D Feuvray
January 1985, European journal of pharmacology,
P Jourdon, and D Feuvray
December 1988, The American journal of physiology,
P Jourdon, and D Feuvray
December 1987, The American journal of physiology,
P Jourdon, and D Feuvray
June 1999, Acta physiologica Scandinavica,
P Jourdon, and D Feuvray
July 2003, Pflugers Archiv : European journal of physiology,
P Jourdon, and D Feuvray
May 1996, The American journal of physiology,
P Jourdon, and D Feuvray
January 1998, Journal of molecular and cellular cardiology,
P Jourdon, and D Feuvray
May 2014, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!