Mechanism of mu-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. 1993

M Capogna, and B H Gähwiler, and S M Thompson
Brain Research Institute, University of Zurich, Switzerland.

1. The electrophysiological action of the mu-opioid receptor-preferring agonist D-Ala2, MePhe4, Met(O)5-ol-enkephalin (FK 33-824) on synaptic transmission has been studied in area CA3 of organotypic rat hippocampal slice cultures. 2. FK 33-824 (1 microM) had no effect on the amplitude of pharmacologically isolated N-methyl-D-aspartate (NMDA) or non-NMDA receptor-mediated EPSPs. 3. FK 33-824 (10 nM to 10 microM) reduced the amplitude of monosynaptic inhibitory postsynaptic potentials (IPSPs) that were elicited in pyramidal cells with local stimulation after pharmacological blockade of excitatory amino acid receptors. This effect was reversible, dose-dependent, and sensitive to naloxone and the mu-receptor antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP). FK 33-824 at 1 microM caused a mean reduction in the amplitude of the monosynaptic IPSP of 70%. 4. Neither delta- nor kappa-receptor-preferring agonists had any effect on excitatory or inhibitory synaptic potentials. 5. The disinhibitory action of FK 33-824 was blocked by incubating the cultures with pertussis toxin (500 ng/ml for 48 h) or by stimulation of protein kinase C with phorbol 12,13-dibutyrate (PDBu, 0.5 microM). 6. The depression of monosynaptic IPSPs by FK 33-824 was unaffected by extracellular application of the K+ channel blockers Ba2+ or Cs+ (1 mM each). 7. FK 33-824 produced a decrease in the frequency of miniature, action potential-independent, spontaneous inhibitory synaptic currents (mIPSCs) recorded with whole-cell voltage-clamp techniques, but did not change their mean amplitude. Application of the Ca2+ channel blocker Cd2+ (100 microM) or of nominally Ca(2+)-free solutions did not alter either the frequency and amplitude of mIPSCs or the reduction of mIPSC frequency induced by FK 33-824. 8. The effect of FK 33-824 on spontaneous mIPSCs was prevented by naloxone, and by incubation of cultures with pertussis toxin. 9. These results indicate that mu-opioid receptors decrease GABA release presynaptically by a G protein-mediated inhibition of the vesicular GABA release process, and not by changes in axon terminal K+ or Ca2+ conductances that are sensitive to extracellular Ba2+, Cs+ or Cd2+.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D005405 D-Ala(2),MePhe(4),Met(0)-ol-enkephalin A stable synthetic analog of methionine enkephalin (ENKEPHALIN, METHIONINE). Actions are similar to those of methionine enkephalin. Its effects can be reversed by narcotic antagonists such as naloxone. DAMME,FK 33-824,FK-33-824,FK-33824,Tyr-Ala-Gly-MePhe-Met-OH,FK 33 824,FK 33824,FK33824,Tyr Ala Gly MePhe Met OH
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

M Capogna, and B H Gähwiler, and S M Thompson
March 1998, Journal of neurophysiology,
M Capogna, and B H Gähwiler, and S M Thompson
October 1992, Journal of neurophysiology,
M Capogna, and B H Gähwiler, and S M Thompson
June 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Capogna, and B H Gähwiler, and S M Thompson
January 1990, Neuroscience,
M Capogna, and B H Gähwiler, and S M Thompson
June 1998, The Journal of physiology,
M Capogna, and B H Gähwiler, and S M Thompson
September 1998, Japanese journal of pharmacology,
M Capogna, and B H Gähwiler, and S M Thompson
May 1991, Proceedings. Biological sciences,
Copied contents to your clipboard!