Lateral hypothalamic lesions alter baroreceptor-evoked inhibition of rat supraoptic vasopressin neurones. 1993

R Nissen, and J T Cunningham, and L P Renaud
Loeb Research Institute, Ottawa Civic Hospital, Ontario, Canada.

1. Previous electrophysiological studies on rat hypothalamic supraoptic nucleus neurones have demonstrated that both the activation of peripheral baroreceptors (induced by a brief rise in arterial pressure consequent to an intravenous injection of an alpha-adrenergic agonist, metaraminol) and electrical stimulation in the diagonal band of Broca evokes a GABA-mediated postsynaptic inhibition which selectively involves the phasic-firing (putative vasopressin-secreting) neuronal population. Although baroreceptor-triggered inhibitions are abolished after diagonal band lesions, anatomical data support the hypothesis that the GABAergic neurones mediating both the baroreflex and electrically induced inhibitions are not located in the diagonal band, but rather in the lateral hypothalamus adjacent to the supraoptic nucleus. To determine the validity of this hypothesis, excitotoxic lesions were placed in the lateral hypothalamus and their effects on both baroreceptor- and diagonal band-evoked inhibitions were evaluated. 2. Male Long-Evans rats were initially anaesthetized with intraperitoneal pentobarbitone, stereotaxically injected with an excitotoxin (ibotenic acid) or vehicle into the lateral hypothalamus on the left side and allowed to recover. Three or more days later, animals were again anaesthetized with pentobarbitone and the ventral surface of their hypothalamus was exposed for electrophysiological recording of neurones in the left supraoptic nucleus. In all injected animals, extracellular recordings from antidromically identified, phasically firing supraoptic neurones were evaluated for their response to activation of peripheral baroreceptors and to electrical stimulation in the diagonal band. 3. Increases in arterial pressure sufficient to activate peripheral baroreceptors were achieved by intravenous bolus infusions of metaraminol (10 micrograms/10 microliters). In vehicle control animals (n = 6), the activity of 34/39 neurones was inhibited by baroreceptor activation. In lesion control animals (n = 13) similar inhibitions were observed from 60/65 neurones. In the lateral hypothalamic lesioned group (n = 7), the activity of only 12/34 neurones were inhibited by similar elevations in blood pressure. 4. Ibotenic acid lesions in the lateral hypothalamus also disrupted the responsiveness of supraoptic neurones to electrical stimulation in the diagonal band. Whereas diagonal band stimulation in vehicle control and lesion control rats reduced the excitability in 7/9 cells and 15/19 cells respectively, only 1/7 cells responded in the lesioned animals. 5. Lesions having a significant effect on the responsiveness of vasopressin-secreting neurones to baroreceptor activation extended laterally towards the nucleus of the lateral olfactory tract, dorsally into the striatum and medially to the fornix.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007026 Hypothalamic Area, Lateral Area in the hypothalamus bounded medially by the mammillothalamic tract and the anterior column of the FORNIX (BRAIN). The medial edge of the INTERNAL CAPSULE and the subthalamic region form its lateral boundary. It contains the lateral hypothalamic nucleus, tuberomammillary nucleus, lateral tuberal nuclei, and fibers of the MEDIAL FOREBRAIN BUNDLE. Lateral Hypothalamic Area,Lateral Hypothalamic Nucleus,Tuberomammillary Nucleus,Accessory Nucleus of the Ventral Horn,Area Hypothalamica Lateralis,Area Lateralis Hypothalami,Lateral Hypothalamus,Lateral Tuberal Nuclei,Lateral Tuberal Nucleus,Area Hypothalamica Laterali,Area Lateralis Hypothalamus,Area, Lateral Hypothalamic,Areas, Lateral Hypothalamic,Hypothalami, Area Lateralis,Hypothalamic Areas, Lateral,Hypothalamic Nucleus, Lateral,Hypothalamica Laterali, Area,Hypothalamica Lateralis, Area,Hypothalamus, Area Lateralis,Hypothalamus, Lateral,Lateral Hypothalamic Areas,Laterali, Area Hypothalamica,Lateralis Hypothalami, Area,Lateralis Hypothalamus, Area,Lateralis, Area Hypothalamica,Nuclei, Lateral Tuberal,Nucleus, Lateral Hypothalamic,Nucleus, Lateral Tuberal,Nucleus, Tuberomammillary,Tuberal Nuclei, Lateral,Tuberal Nucleus, Lateral
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008297 Male Males
D008680 Metaraminol A sympathomimetic agent that acts predominantly at alpha-1 adrenergic receptors. It has been used primarily as a vasoconstrictor in the treatment of HYPOTENSION. Isophenylephrine,Metaradrin,m-Hydroxynorephedrine,meta-Hydroxynorephedrine,Aramine,Araminol,Hydroxyphenylpropanolamine,Metaraminol Bitartrate,Metaraminol Bitartrate (1:1),Metaraminol Tartrate,m-Hydroxyphenylpropanolamine,Bitartrate, Metaraminol,Tartrate, Metaraminol,m Hydroxynorephedrine,m Hydroxyphenylpropanolamine,meta Hydroxynorephedrine
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

R Nissen, and J T Cunningham, and L P Renaud
December 1986, The Journal of physiology,
R Nissen, and J T Cunningham, and L P Renaud
February 1994, Neuropharmacology,
R Nissen, and J T Cunningham, and L P Renaud
February 1988, Neuroscience letters,
R Nissen, and J T Cunningham, and L P Renaud
October 1984, The Journal of physiology,
R Nissen, and J T Cunningham, and L P Renaud
September 1970, Brain research,
R Nissen, and J T Cunningham, and L P Renaud
November 1999, The Journal of physiology,
R Nissen, and J T Cunningham, and L P Renaud
January 2013, Journal of neuroendocrinology,
R Nissen, and J T Cunningham, and L P Renaud
July 1979, The Journal of endocrinology,
R Nissen, and J T Cunningham, and L P Renaud
January 1972, The Journal of physiology,
R Nissen, and J T Cunningham, and L P Renaud
May 2010, Journal of neuroendocrinology,
Copied contents to your clipboard!