Bilateral communication between vestibular labyrinths in pigeons. 1993

J D Dickman, and M J Correia
Department of Surgery (Otolaryngology), University of Mississippi Medical Center 39216.

Extracellular action potentials from single horizontal semicircular canal primary afferent fibers were recorded in paralysed decerebrate pigeons during pulse mechanical stimulation of the contralateral horizontal semicircular canal. Clear responses to the contralateral membranous duct displacement stimuli were observed in 51% of the tested 158 horizontal semicircular canal afferents. Generally, three different types of responses were obtained in the primary afferent fibers including excitation, inhibition, and a few complex type neural activity profiles. Inhibitory responses were of larger amplitude and had longer time constants than did excitatory responses. The few complex type responses observed were characterized by an initial excitatory discharge followed by a longer duration decrease in the fiber's firing rate. The sensitivity to stimulation and type of response obtained for each afferent was significantly correlated with the fiber's coefficient of variation value. Regular firing afferents were less sensitive and exhibited primarily excitatory responses (71%) to contralateral canal stimulation. Irregular firing afferents were more sensitive and exhibited mostly inhibitory responses (84%). The present results demonstrate that a communication network for information exchange between the bilateral labyrinths exists in pigeons. The observed responses in primary afferent fibers to contralateral horizontal semicircular canal stimulation are proposed to be mediated by the vestibular efferent system, which could provide an anatomical pathway for information exchange from vestibular receptors on opposite sides of the head.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D008297 Male Males
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D010856 Columbidae Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable. Columba livia,Doves,Pigeons,Domestic Pigeons,Feral Pigeons,Rock Doves,Rock Pigeons,Domestic Pigeon,Dove,Dove, Rock,Doves, Rock,Feral Pigeon,Pigeon,Pigeon, Domestic,Pigeon, Feral,Pigeon, Rock,Pigeons, Domestic,Pigeons, Feral,Pigeons, Rock,Rock Dove,Rock Pigeon
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

J D Dickman, and M J Correia
May 1969, Brain research,
J D Dickman, and M J Correia
December 2004, Bulletin of experimental biology and medicine,
J D Dickman, and M J Correia
January 1986, Archives of oto-rhino-laryngology,
J D Dickman, and M J Correia
January 1983, Kosmicheskaia biologiia i aviakosmicheskaia meditsina,
J D Dickman, and M J Correia
February 1980, Science (New York, N.Y.),
J D Dickman, and M J Correia
January 1979, Human physiology,
J D Dickman, and M J Correia
January 1945, Comptes rendus des seances de la Societe de biologie et de ses filiales,
J D Dickman, and M J Correia
January 1975, Experimental brain research,
J D Dickman, and M J Correia
March 1996, The Journal of comparative neurology,
Copied contents to your clipboard!