Calcium modulates the influence of length changes on the myofibrillar adenosine triphosphatase activity in rat skinned cardiac trabeculae. 1993

G J Stienen, and Z Papp, and G Elzinga
Department of Physiology, Institute for Cardiovascular Research, Free University, Amsterdam, The Netherlands.

The relationship between adenosine triphosphate (ATP) turnover and muscle performance was investigated in skinned cardiac trabeculae of the rat at different [Ca2+] and two different sarcomere lengths (1.8 microns and 2.2 microns) at 20 degrees C. ATP turnover was measured photometrically by enzymatic coupling of the regeneration of ATP to the oxidation of reduced nicotinamide adenine dinucleotide. The trabeculae were studied under isometric conditions and when the length was altered repetitively at a frequency of 23 Hz, with a square wave, by 5% of the initial length. The isometric ATPase activity amounted to 0.48 mM/s. Isometric ATP turnover and force were proportional at different [Ca2+]. During length changes at maximal activation (pCa 4.27) and 2.2 microns sarcomere length, ATPase activity increased to up to 162% whereas at low [Ca2+], ATPase activity decreased with respect to the isometric value at that pCa. At pCa 5.5, ATPase activity was reduced to 33%. These results indicate that during the length changes the apparent cross-bridge detachment rate is increased and the apparent attachment rate is decreased. The findings suggest that the Fenn effect, i.e. the increase in energy turnover above the isometric value during shortening, is present in cardiac trabeculae at high levels of activation, but is absent or reversed at lower levels of activity.

UI MeSH Term Description Entries
D007551 Isotonic Contraction Muscle contraction with negligible change in the force of contraction but shortening of the distance between the origin and insertion. Contraction, Isotonic,Contractions, Isotonic,Isotonic Contractions
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G J Stienen, and Z Papp, and G Elzinga
May 1994, The Journal of physiology,
G J Stienen, and Z Papp, and G Elzinga
November 1979, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
G J Stienen, and Z Papp, and G Elzinga
May 1961, The Journal of biological chemistry,
G J Stienen, and Z Papp, and G Elzinga
October 1964, The Journal of biological chemistry,
G J Stienen, and Z Papp, and G Elzinga
January 2002, Circulation research,
G J Stienen, and Z Papp, and G Elzinga
May 1962, The American journal of physiology,
G J Stienen, and Z Papp, and G Elzinga
March 1970, Journal of anatomy,
Copied contents to your clipboard!