5-HT1A receptors mediate the effect of the bulbospinal serotonin system on spinal dorsal horn nociceptive neurons. 1994

F P Zemlan, and A Z Murphy, and M M Behbehani
Department of Psychiatry, University of Cincinnati College of Medicine, Ohio 45267-0559.

The present study examined whether the effect of stimulation of the nucleus raphe magnus (NRM) is mediated by spinal cord dorsal horn serotonin1A (5-HT1A) receptors in the rat. This hypothesis predicts that nociceptive dorsal horn units inhibited by NRM stimulation or iontophoretic 5-HT application would also be inhibited by iontophoresis of the selective 5-HT1A agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and buspirone. A total of 78 dorsal horn wide-dynamic-range neurons were recorded. Overall, 62% of the cells tested (48/78) were responsive to electrical stimulation of the NRM with the predominant response being inhibitory (38/48; 79%). Fifty-eight cells were tested for their response to both NRM stimulation and 8-OH-DPAT iontophoresis: 20/58 cells were inhibited by NRM stimulation and 50% of the cells inhibited by NRM stimulation were also inhibited by 8-OH-DPAT. Fifty-two cells were tested for their response to both NRM stimulation and buspirone iontophoresis: 14/52 cells were inhibited by NRM stimulation with 9/14 similarly inhibited by buspirone. To examine whether exogenously applied serotonin produced an effect through 5-HT1A receptors, the effect of both 5-HT and 8-OH-DPAT iontophoresis was tested on 57 dorsal horn neurons. The majority of cells (25/57) were inhibited by 5-HT application; 15/25 were similarly inhibited by 8-OH-DPAT. The response of 48 dorsal horn cells to 5-HT and buspirone iontophoresis was compared. Forty-four percent (21/48) of the cells were inhibited by 5-HT; 16/21 were also inhibited by buspirone.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002065 Buspirone An anxiolytic agent and serotonin receptor agonist belonging to the azaspirodecanedione class of compounds. Its structure is unrelated to those of the BENZODIAZAPINES, but it has an efficacy comparable to DIAZEPAM. Anxut,Apo-Buspirone,Bespar,Busp,Buspar,Buspirone Hydrochloride,Gen-Buspirone,Lin-Buspirone,MJ-9022-1,N-(4-(4-(2-pyrimidinyl)-1-piperazinyl)butyl)-1-cyclopentanediacetamide,Neurosine,Novo-Buspirone,Nu-Buspirone,PMS-Buspirone,Ratio-Buspirone,Apo Buspirone,Gen Buspirone,Hydrochloride, Buspirone,Lin Buspirone,MJ 9022 1,MJ90221,Novo Buspirone,Nu Buspirone,PMS Buspirone,Ratio Buspirone
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

F P Zemlan, and A Z Murphy, and M M Behbehani
April 2003, Anesthesia and analgesia,
F P Zemlan, and A Z Murphy, and M M Behbehani
December 1996, European journal of pharmacology,
F P Zemlan, and A Z Murphy, and M M Behbehani
July 1982, Masui. The Japanese journal of anesthesiology,
F P Zemlan, and A Z Murphy, and M M Behbehani
February 1997, Brain research. Developmental brain research,
F P Zemlan, and A Z Murphy, and M M Behbehani
December 2008, Journal of chemical neuroanatomy,
F P Zemlan, and A Z Murphy, and M M Behbehani
November 2018, Journal of neurochemistry,
F P Zemlan, and A Z Murphy, and M M Behbehani
December 1988, Neuroscience letters,
F P Zemlan, and A Z Murphy, and M M Behbehani
February 1993, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!