A wide range of human cancers express interleukin 4 (IL4) receptors that can be targeted with chimeric toxin composed of IL4 and Pseudomonas exotoxin. 1993

W Debinski, and R K Puri, and R J Kreitman, and I Pastan
Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

A chimeric toxin has been constructed by fusion of a gene encoding human interleukin 4 (hIL4) to a gene encoding a mutant form of Pseudomonas exotoxin A (PE) which cannot bind to its receptors (PE4E). The chimeric gene was expressed in Escherichia coli where large amounts of the chimeric toxin, hIL4-PE4E, was produced. Purified hIL4-PE4E was very cytotoxic to cancer cell lines of both hematopoietic and solid tumor origin. In the HUT 102 T cell leukemia and Daudi B cell lymphoma cell lines, protein synthesis was inhibited by 50% (ID50) at a hIL4-PE4E concentration of 2 and 7 ng/ml (25 and 86 pM, respectively). hIL4-PE4E was also very cytotoxic to cell lines derived from carcinomas of the colon, breast, stomach, liver, adrenals, and prostate, as well as melanoma and epidermoid carcinoma, indicating that hIL4 receptors are widely expressed on human malignancies. We also found that human phytohemagglutinin-activated peripheral blood lymphocytes were extremely sensitive to hIL4-PE4E with an ID50 of 0.2 ng/ml (2.5 pM). The cytotoxic action of hIL4-PE4E was specific because it was blocked by an excess of hIL4 and not of human interleukin 2. In addition, hIL4-PE4ED553, an enzymatically inactive form of the chimeric toxin, was not cytotoxic. These results suggest that the hIL4 receptor may be a target for therapy in malignant and immunologic disorders using hIL4 chimeric toxin.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011975 Receptors, Mitogen Glycoprotein molecules on the surface of B- and T-lymphocytes, that react with molecules of antilymphocyte sera, lectins, and other agents which induce blast transformation of lymphocytes. Lectin Receptors,Mitogen Receptors,Receptors, Lectin,Mitogen Receptor,Receptor, Mitogen
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

W Debinski, and R K Puri, and R J Kreitman, and I Pastan
March 1991, Cell,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
March 2012, Zhonghua yi xue za zhi,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
October 1993, Cancer research,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
July 1995, Applied microbiology and biotechnology,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
October 2003, Journal of neuro-oncology,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
March 1991, Molecular and cellular biology,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
November 1990, Blood,
W Debinski, and R K Puri, and R J Kreitman, and I Pastan
June 1990, Molecular and cellular biology,
Copied contents to your clipboard!