Oleic acid supplementation reduces oxidant-mediated dysfunction of cultured porcine pulmonary artery endothelial cells. 1993

C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
Department of Medicine, Indiana University School of Medicine, Indianapolis 46202.

We have previously shown that supplementing cultured porcine pulmonary artery endothelial cells (PAEC) with exogenous oleic acid (18:1 omega 9) alters the fatty acid composition of the cells and reduces oxidant-mediated cytotoxicity. Because the mechanisms by which lipid alterations modulate oxidant susceptibility have not been defined, the ability of 18:1 to reduce hydrogen peroxide (H2O2)-mediated PAEC dysfunction was evaluated. PAEC monolayers on polycarbonate filters were incubated for 3 h in maintenance medium supplemented with either 0.1 mM 18.1 in ethanol vehicle (ETOH) or with an equivalent volume of vehicle alone. Twenty-four hours later monolayers were treated for 30 min with 50 or 100 microM H2O2 in Hanks' balanced salt solution (HBSS) or with HBSS alone (nonoxidant control). As a functional index of PAEC monolayer integrity, the permeability of monolayers to albumin was then measured for 3 h. Treatment with 100 microM H2O2 caused cytotoxicity and progressive increases in PAEC monolayer permeability that were attenuated by 18:1 supplementation, whereas 50 microM H2O2 caused only a transient increase in permeability without cytotoxicity. Supplementation with 18:1 also attenuated H2O2-induced reductions in PAEC adenosine triphosphate (ATP) content and disruption of PAEC microfilament architecture. The ATP content of PAEC monolayers was reversibly reduced in the absence of oxidant stress by incubation with glucose-depleted medium containing deoxyglucose and antimycin A. Metabolic inhibitor-induced ATP depletion increased monolayer permeability and altered cytoskeletal architecture, alterations that resolved during recovery of PAEC ATP content. These results demonstrate that ATP depletion plays a critical role in barrier dysfunction and suggests that the ability of 18:1 to reduce oxidant-mediated PAEC dysfunction and injury may relate directly to its ability to preserve PAEC ATP content.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen

Related Publications

C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
January 1997, Experimental lung research,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
November 1990, American journal of respiratory cell and molecular biology,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
October 2009, The Journal of surgical research,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
September 1994, The American journal of physiology,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
July 2002, American journal of physiology. Lung cellular and molecular physiology,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
May 2012, Atherosclerosis,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
May 1996, Journal of cellular physiology,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
December 2016, Cardiovascular drugs and therapy,
C M Hart, and S P Andreoli, and C E Patterson, and J G Garcia
June 1997, The American journal of physiology,
Copied contents to your clipboard!