Analysis of proinsulin and its conversion products by reversed-phase high-performance liquid chromatography. 1993

S Linde, and B S Welinder, and J H Nielsen
Immunochemical Department, Novo Nordisk A/S, Bagsvaerd, Denmark.

Proinsulin is synthesized in the beta-cells of the endocrine pancreas, one of the four cell types found in the islets of Langerhans. Specific enzymatic cleavage of proinsulin results in the formation of equimolar amounts of insulin and C-peptide, via several intermediate split-proinsulin forms. Most mammals produce a single insulin, but in rodents two non-allelic insulin genes are expressed. There is an inverse ratio between the two insulins in rats and mice, the reason for this being unknown. It has been suggested that differences in transcription, translation (biosynthesis) and/or posttranslational processes (enzymatic conversion, intracellular degradation) could be possible explanations. Elevated amounts of proinsulin-immunoreactive material (PIM) have been described to occur in various conditions/diseases, suggesting alterations in beta-cell function, but the composition of the secreted PIM (intact proinsulin or its intermediates) has been incompletely determined. Studies of the biosynthesis of proinsulins and their conversion with the purpose of revealing some of these points depend on accessible reversed-phase high-performance liquid chromatographic (RP-HPLC) analyses capable of separating all the relevant, closely related polypeptides involved. This review will deal with the optimization of the RP-HPLC separations as well as sample preparation and recovery. Applications of the selected methods in the study of proinsulin biosynthesis and its conversion will also be presented.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Linde, and B S Welinder, and J H Nielsen
June 1985, Journal of chromatography,
S Linde, and B S Welinder, and J H Nielsen
June 1989, Journal of chromatography,
S Linde, and B S Welinder, and J H Nielsen
May 2004, Se pu = Chinese journal of chromatography,
S Linde, and B S Welinder, and J H Nielsen
March 1985, Yao xue xue bao = Acta pharmaceutica Sinica,
S Linde, and B S Welinder, and J H Nielsen
January 2004, Methods in molecular biology (Clifton, N.J.),
S Linde, and B S Welinder, and J H Nielsen
January 1984, Methods in enzymology,
S Linde, and B S Welinder, and J H Nielsen
October 1983, Journal of lipid research,
S Linde, and B S Welinder, and J H Nielsen
September 1995, Annals of clinical biochemistry,
S Linde, and B S Welinder, and J H Nielsen
January 1984, Journal of chromatography,
S Linde, and B S Welinder, and J H Nielsen
December 1984, Journal of chromatography,
Copied contents to your clipboard!