Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. 1993

M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.

Beginning at the time of insulitis (7 wk of age), CD4+ and CD8+ mature thymocytes from nonobese diabetic (NOD) mice exhibit a proliferative unresponsiveness in vitro after T cell receptor (TCR) crosslinking. This unresponsiveness does not result from either insulitis or thymic involution and is long lasting, i.e., persists until diabetes onset (24 wk of age). We previously proposed that it represents a form of thymic T cell anergy that predisposes to diabetes onset. This hypothesis was tested in the present study by further investigating the mechanism responsible for NOD thymic T cell proliferative unresponsiveness and determining whether reversal of this unresponsiveness protects NOD mice from diabetes. Interleukin 4 (IL-4) secretion by thymocytes from > 7-wk-old NOD mice was virtually undetectable after treatment with either anti-TCR alpha/beta, anti-CD3, or Concanavalin A (Con A) compared with those by thymocytes from age- and sex-matched control BALB/c mice stimulated under identical conditions. NOD thymocytes stimulated by anti-TCR alpha/beta or anti-CD3 secreted less IL-2 than did similarly activated BALB/c thymocytes. However, since equivalent levels of IL-3 were secreted by Con A-activated NOD and BALB/c thymocytes, the unresponsiveness of NOD thymic T cells does not appear to be dependent on reduced IL-2 secretion. The surface density and dissociation constant of the high affinity IL-2 receptor of Con A-activated thymocytes from both strains are also similar. The patterns of unresponsiveness and lymphokine secretion seen in anti-TCR/CD3-activated NOD thymic T cells were also observed in activated NOD peripheral spleen T cells. Exogenous recombinant (r)IL-2 only partially reverses NOD thymocyte proliferative unresponsiveness to anti-CD3, and this is mediated by the inability of IL-2 to stimulate a complete IL-4 secretion response. In contrast, exogenous IL-4 reverses the unresponsiveness of both NOD thymic and peripheral T cells completely, and this is associated with the complete restoration of an IL-2 secretion response. Furthermore, the in vivo administration of rIL-4 to prediabetic NOD mice protects them from diabetes. Thus, the ability of rIL-4 to reverse completely the NOD thymic and peripheral T cell proliferative defect in vitro and protect against diabetes in vivo provides further support for a causal relationship between this T cell proliferative unresponsiveness and susceptibility to diabetes in NOD mice.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors

Related Publications

M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
March 2008, Endocrinology,
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
May 2013, Journal of agricultural and food chemistry,
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
May 1992, The Journal of experimental medicine,
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
December 1993, Science (New York, N.Y.),
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
December 1993, Science (New York, N.Y.),
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
December 1993, Science (New York, N.Y.),
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
July 2010, PloS one,
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
January 1993, Annals of clinical and laboratory science,
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
November 1997, The Journal of experimental medicine,
M J Rapoport, and A Jaramillo, and D Zipris, and A H Lazarus, and D V Serreze, and E H Leiter, and P Cyopick, and J S Danska, and T L Delovitch
November 1997, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!