Magnetization transfer effects in multislice MR imaging. 1993

G E Santyr
Department of Medical Physics, University of Wisconsin, Madison 53705.

A theoretical model is presented which describes the effects of magnetization transfer in multislice MR imaging of a tissue-mimicking phantom composed of cross-linked agar gel. The model is successful in explaining differences between single and multislice image signal intensities observed for the agar gel but not seen in a simple aqueous solution. Magnetization transfer leads to a reduction in the image signal intensity of a slice of interest due to off-resonance RF irradiation arising from 90 degrees and 180 degrees pulses intended for neighboring slices. The contribution of magnetization transfer to multislice MR imaging depends on the amount of off-resonance RF irradiation during the imaging sequence repetition interval. For the tissue-mimicking agar gel, conventional spin-echo multislice imaging gave rise to a negligible image signal intensity reduction (< or = 2%); however, fast spin-echo (FSE) imaging, which employs up to 16 times as many RF pulses per slice, exhibited as much as a 13% reduction in image signal intensity (13 slices). The reduction in multislice image signal intensity due to magnetization transfer is sample specific and is shown to be more dramatic for in vivo human leg muscle (10% for conventional spin echo, 40% for FSE) where magnetization transfer rates are greater than in the cross-linked agar gel.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000362 Agar A complex sulfated polymer of galactose units, extracted from Gelidium cartilagineum, Gracilaria confervoides, and related red algae. It is used as a gel in the preparation of solid culture media for microorganisms, as a bulk laxative, in making emulsions, and as a supporting medium for immunodiffusion and immunoelectrophoresis.

Related Publications

G E Santyr
January 1990, Magnetic resonance imaging,
G E Santyr
March 1992, Magnetic resonance in medicine,
G E Santyr
February 2009, Neuroimaging clinics of North America,
G E Santyr
May 1999, AJNR. American journal of neuroradiology,
G E Santyr
January 1993, AJNR. American journal of neuroradiology,
G E Santyr
January 1993, Journal of magnetic resonance imaging : JMRI,
G E Santyr
January 1991, Magnetic resonance imaging,
G E Santyr
April 2007, Journal of magnetic resonance imaging : JMRI,
Copied contents to your clipboard!