Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli. 1993

G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany.

GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. The gene coding for this enzyme in Escherichia coli has been cloned by marker rescue. Sequencing indicated an open reading frame of 588 bp coding for a 21.8-kDa peptide of 196 amino acids. The gene was mapped to a position at 28.2 min on the E. coli chromosome and is identical with ribA. GTP cyclohydrolase II was overexpressed in a recombinant strain carrying a plasmid with the cloned gene. The enzyme was purified to homogeneity from the recombinant strain. The N-terminal sequence determined by Edman degradation was identical to the predicted sequence. The sequence is homologous to the 3' part of the central open reading frame in the riboflavin operon of Bacillus subtilis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006136 GTP Cyclohydrolase (GTP cyclohydrolase I) or GTP 7,8-8,9-dihydrolase (pyrophosphate-forming) (GTP cyclohydrolase II). An enzyme group that hydrolyzes the imidazole ring of GTP, releasing carbon-8 as formate. Two C-N bonds are hydrolyzed and the pentase unit is isomerized. This is the first step in the synthesis of folic acid from GTP. EC 3.5.4.16 (GTP cyclohydrolase I) and EC 3.5.4.25 (GTP cyclohydrolase II). GTP 8-Formylhydrolase,GTP Dihydrolase,GTP Ring-Opening Enzyme,7,8-Dihydroneopterintriphosphate Synthetase,GTP Cyclohydrolase I,GTP Cyclohydrolase II,7,8 Dihydroneopterintriphosphate Synthetase,8-Formylhydrolase, GTP,Cyclohydrolase I, GTP,Cyclohydrolase II, GTP,Cyclohydrolase, GTP,Dihydrolase, GTP,GTP 8 Formylhydrolase,GTP Ring Opening Enzyme,Ring-Opening Enzyme, GTP,Synthetase, 7,8-Dihydroneopterintriphosphate
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012256 Riboflavin Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE. Vitamin B 2,Vitamin G,Vitamin B2
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
January 1990, FEMS microbiology letters,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
December 1996, European journal of biochemistry,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
January 1983, TSitologiia i genetika,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
June 1992, Journal of bacteriology,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
January 1980, Methods in enzymology,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
August 2009, The FEBS journal,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
August 1995, Yeast (Chichester, England),
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
February 1995, Gene,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
November 2001, The Journal of biological chemistry,
G Richter, and H Ritz, and G Katzenmeier, and R Volk, and A Kohnle, and F Lottspeich, and D Allendorf, and A Bacher
September 1993, Journal of bacteriology,
Copied contents to your clipboard!