Photochemical inactivation of cell-associated human immunodeficiency virus in platelet concentrates. 1993

L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
Steritech Inc. Concord, CA.

Photochemical decontamination (PCD) of platelet concentrates, with adequate preservation of platelet function, has been shown using 8-methoxypsoralen (8-MOP) and long wavelength UV light (UVA). To further evaluate this technique, models for the inactivation of pathogenic human cell-associated viruses and integrated proviral sequences are required. We have assessed the ability of the PCD technique to inactivate cell-associated human immunodeficiency virus 1 (HIV-1) in platelet concentrates. We correlated PCD inhibition of HIV-1 infectivity with 8-MOP-DNA adduct formation in contaminating nucleated cells, and measured the inhibition of polymerase chain reaction (PCR)-mediated amplification of cellular DNA sequences as a surrogate for inactivation of integrated proviral nucleic acid sequences. After PCD treatment (8-MOP 300 micrograms/mL, UVA 17 mW/cm2) for 60 minutes, 0.5 x 10(6) plaque-forming units (PFU)/mL of cell-associated HIV-1 were inactivated and no virus was detectable by infectivity assay. After 60 minutes of PCD, 15 8-MOP-DNA adducts per 1,000 bp were formed, while in the absence of UVA, no adducts were formed. PCR-mediated amplification of a 242-bp cellular DNA sequence (HLA-DQ-alpha) was inhibited when greater than eight psoralen-DNA adducts per 1,000 bp were present. These studies indicate that high titers of cell-associated HIV-1 in platelet concentrates were inactivated by PCD, and the numbers of 8-MOP-DNA adducts in nucleated cells were sufficient to inhibit amplification of DNA segments that encode for as few as 80 amino acids. Based on the frequency of 8-MOP-DNA adducts, for the 10-kb HIV-1 genome, the probability of an integrated genome without at least one 8-MOP adduct after 60 minutes of PCD was 10(-33).

UI MeSH Term Description Entries
D008730 Methoxsalen A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. 8-Methoxypsoralen,Ammoidin,Xanthotoxin,8-MOP,Deltasoralen,Dermox,Geroxalen,Meladinina,Meladinine,Meloxine,Methoxa-Dome,Méladinine,Oxsoralen,Oxsoralen-Ultra,Puvalen,Ultramop,8 MOP,8 Methoxypsoralen,8MOP,Methoxa Dome,Oxsoralen Ultra
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011533 Proviruses Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology. Provirus
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
December 2000, Transfusion,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
July 2005, Transfusion,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
May 1996, Transfusion,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
August 2005, Transfusion medicine (Oxford, England),
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
August 1996, Transfusion,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
August 1994, Transfusion,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
March 1998, Blood,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
June 2004, Transfusion,
L Lin, and H Londe, and C V Hanson, and G Wiesehahn, and S Isaacs, and G Cimino, and L Corash
July 1987, Thrombosis research,
Copied contents to your clipboard!