Mutations in p53 are frequent in the preneoplastic stage of mouse mammary tumor development. 1993

D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030.

Preneoplastic lesions in the mammary gland represent a population of cells at increased risk of progression to tumors. Because p53 is the most commonly mutated gene in human breast cancer, we sought to determine whether mutations in p53 were present in preneoplastic lesions or were acquired during progression to overt tumors. In the mouse mammary gland, hyperplastic alveolar nodules (HAN) are the most common preneoplastic lesion. Analysis of the TM series of transplantable murine HAN outgrowths and tumors allowed the status of p53 to be determined at distinct stages of mammary tumorigenesis. Alterations in the p53 gene or in the pattern of p53 protein expression were observed in all five HAN outgrowth lines examined. Altered expression of p53 protein was detected in 3 of 5 TM HAN outgrowth lines as determined by immunohistochemistry. Overexpression of nuclear p53 was detected in only a fraction of the cells (10-50%) in TM3 and TM4 HAN outgrowths, whereas in tumors that arose from TM4 HAN outgrowths, the proportion of cells overexpressing p53 protein approached approximately 100%. Despite overexpression of p53 in TM3 HAN outgrowths, no tumors have developed in this line. The TM9 outgrowth line exhibited a different pattern of p53 expression by immunohistochemistry: p53 protein was overexpressed in the cytoplasm of virtually all cells in the HAN outgrowths but was localized to the nuclei of TM9 tumor cells. Direct sequencing of p53 transcripts from tumors and cell lines revealed various genetic changes: point mutations in exons 4 and 5 (TM2H, nonsense; TM4, missense); a deletion in exon 5 (TM4); and an insertion in exon 7 (TM3). Although p53 protein was overexpressed in TM9 tumors, it was shown to be wild-type both by immunoprecipitation and direct sequencing of the entire coding region of the cDNA. TM4 cells were homogeneous with respect to mutant p53 genotype and uniformly expressed p53 by immunohistochemical staining in vitro, but transplantation of TM4 cells to fat pads of BALB/c hosts resulted in HAN outgrowths in situ in which < 50% of the cells expressed the mutant p53 at detectable levels. In summary, mutation of the p53 gene and overexpression of p53 protein can occur in preneoplastic mammary epithelial cells, and those mutations are maintained in tumors that arise from the HAN. Conversely, expression of mutant p53 was decreased when cells were grown in situ, implicating the presence of cellular factors that can suppress p53 expression in vivo. These observations demonstrate that the p53 pathway may be a common target for mutation in murine mammary tumorigenesis.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011230 Precancerous Conditions Pathological conditions that tend eventually to become malignant. Preneoplastic Conditions,Condition, Preneoplastic,Conditions, Preneoplastic,Preneoplastic Condition,Condition, Precancerous,Conditions, Precancerous,Precancerous Condition
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015674 Mammary Neoplasms, Animal Tumors or cancer of the MAMMARY GLAND in animals (MAMMARY GLANDS, ANIMAL). Animal Mammary Carcinoma,Mammary Carcinoma, Animal,Mammary Neoplasms,Neoplasms, Mammary,Animal Mammary Carcinomas,Animal Mammary Neoplasm,Animal Mammary Neoplasms,Carcinoma, Animal Mammary,Carcinomas, Animal Mammary,Mammary Carcinomas, Animal,Mammary Neoplasm,Mammary Neoplasm, Animal,Neoplasm, Animal Mammary,Neoplasm, Mammary,Neoplasms, Animal Mammary

Related Publications

D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
February 2004, Cancer research,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
April 2011, Cancer research,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
July 1988, Carcinogenesis,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
January 1983, Current topics in microbiology and immunology,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
March 2004, Proceedings of the National Academy of Sciences of the United States of America,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
January 1995, Anticancer research,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
February 2009, Cancer prevention research (Philadelphia, Pa.),
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
July 1998, Molecular carcinogenesis,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
January 1992, Gynakologisch-geburtshilfliche Rundschau,
D J Jerry, and M A Ozbun, and F S Kittrell, and D P Lane, and D Medina, and J S Butel
January 1996, Anticancer research,
Copied contents to your clipboard!