Pleiotropic models of polygenic variation, stabilizing selection, and epistasis. 1993

S Gavrilets, and G de Jong
N.I. Vavilov Institute of General Genetics, Moscow, Russia.

We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent "stabilizing selection" independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let Vm be the genetic variance supplied by mutation (or migration) each generation, Vg be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order Vm/Vg. In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D004843 Epistasis, Genetic A form of gene interaction whereby the expression of one gene interferes with or masks the expression of a different gene or genes. Genes whose expression interferes with or masks the effects of other genes are said to be epistatic to the effected genes. Genes whose expression is affected (blocked or masked) are hypostatic to the interfering genes. Deviation, Epistatic,Epistatic Deviation,Genes, Epistatic,Genes, Hypostatic,Epistases, Genetic,Gene-Gene Interaction, Epistatic,Gene-Gene Interactions, Epistatic,Genetic Epistases,Genetic Epistasis,Interaction Deviation,Non-Allelic Gene Interactions,Epistatic Gene,Epistatic Gene-Gene Interaction,Epistatic Gene-Gene Interactions,Epistatic Genes,Gene Gene Interaction, Epistatic,Gene Gene Interactions, Epistatic,Gene Interaction, Non-Allelic,Gene Interactions, Non-Allelic,Gene, Epistatic,Gene, Hypostatic,Hypostatic Gene,Hypostatic Genes,Interaction, Epistatic Gene-Gene,Interaction, Non-Allelic Gene,Interactions, Epistatic Gene-Gene,Interactions, Non-Allelic Gene,Non Allelic Gene Interactions,Non-Allelic Gene Interaction
D005787 Gene Frequency The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION. Allele Frequency,Genetic Equilibrium,Equilibrium, Genetic,Allele Frequencies,Frequencies, Allele,Frequencies, Gene,Frequency, Allele,Frequency, Gene,Gene Frequencies
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic

Related Publications

S Gavrilets, and G de Jong
July 2014, Genetics,
S Gavrilets, and G de Jong
March 1990, Genetics,
S Gavrilets, and G de Jong
April 2010, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
S Gavrilets, and G de Jong
May 2009, Physical biology,
S Gavrilets, and G de Jong
February 1995, Genetical research,
S Gavrilets, and G de Jong
June 2022, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!