Analysis of heterodimer formation by the Escherichia coli trp repressor. 1993

B K Hurlburt, and C Yanofsky
Department of Biological Sciences, Stanford University, California 94305.

The trp repressor of Escherichia coli is a dimeric DNA-binding protein that regulates transcription of several operons concerned with tryptophan metabolism. Although heterodimer formation between mutant and wild type subunits occurs readily in vivo, comparable heterodimers could be formed in vitro only under extreme conditions. To explain this difference we analyzed trp repressor dimer formation and dissociation using an in vitro transcription/translation system. Nascent wild type or mutant repressor polypeptides, synthesized in the presence of an excess of a second repressor, were invariably incorporated into heterodimers. In contrast, previously synthesized and assembled wild type dimers appeared to be refractory to dissociation, since they did not form heterodimers. However, previously synthesized mutant dimeric repressors that were defective in tryptophan binding readily dissociated and formed heterodimers. We noted that the ability of a dimeric repressor to dissociate under our conditions correlated inversely with its affinity for tryptophan. Consistent with this conclusion, we found that dissociation of the wild type aporepressor (no added tryptophan) was appreciably more rapid than dissociation of the tryptophan-saturated wild type repressor.

UI MeSH Term Description Entries
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001704 Biopolymers Polymers synthesized by living organisms. They play a role in the formation of macromolecular structures and are synthesized via the covalent linkage of biological molecules, especially AMINO ACIDS; NUCLEOTIDES; and CARBOHYDRATES. Bioplastics,Bioplastic,Biopolymer
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

B K Hurlburt, and C Yanofsky
July 1986, Journal of bacteriology,
B K Hurlburt, and C Yanofsky
June 1987, Biochimica et biophysica acta,
B K Hurlburt, and C Yanofsky
March 1988, The Biochemical journal,
B K Hurlburt, and C Yanofsky
October 1983, The Journal of biological chemistry,
B K Hurlburt, and C Yanofsky
November 1988, Genetics,
B K Hurlburt, and C Yanofsky
November 1991, European journal of biochemistry,
B K Hurlburt, and C Yanofsky
October 1985, European journal of biochemistry,
B K Hurlburt, and C Yanofsky
November 1991, European journal of biochemistry,
B K Hurlburt, and C Yanofsky
April 1993, Biochemistry,
B K Hurlburt, and C Yanofsky
December 1963, Biochimica et biophysica acta,
Copied contents to your clipboard!