The combined effect of tumor-produced parathyroid hormone-related protein and transforming growth factor-alpha enhance hypercalcemia in vivo and bone resorption in vitro. 1993

T A Guise, and T Yoneda, and A J Yates, and G R Mundy
Department of Medicine, University of Texas Health Science Center, San Antonio 78284-7877.

Humoral hypercalcemia of malignancy is a multifactorial syndrome caused by the action of tumor-produced factors on target organs of bone, kidney, and intestine to disrupt normal calcium homeostasis. Although parathyroid hormone-related protein (PTHrP) plays an integral role in the syndrome, tumors also produce other hypercalcemic factors, such as transforming growth factor-alpha (TGF-alpha), which may modulate the effects of PTHrP. In order to determine if the effects of PTHrP on calcium homeostasis can be modulated by TGF-alpha, we have used a human squamous cell carcinoma cell line (RWGT2) which produces PTHrP alone and Chinese hamster ovarian (CHO) cells expressing only transfected human TGF-alpha complementary DNA (CHO/TGF-alpha). We studied the effects of these tumors on calcium homeostasis in nude mice bearing both tumors or each tumor alone. Whole blood ionized calcium concentrations (mean +/- SEM in mmol/L) were significantly higher in mice bearing both RWGT2 and CHO/TGF-alpha tumors (3.11 +/- 0.06, P < 0.05) when compared with mice bearing either RWGT2 alone (2.02 +/- 0.06), CHO/TGF-alpha alone (1.42 +/- 0.01), or RWGT2 and nontransfected CHO tumors (1.86 +/- 0.01). This enhanced effect was also observed using continuous PTHrP-(1-34) infusion (2 micrograms/day) in mice bearing CHO/TGF-alpha tumors. In addition, tumor cell conditioned media was tested for bone resorbing activity in organ cultures of fetal rat long bones previously incorporated with 45calcium (45Ca++). Conditioned medium at 0.1% (vol/vol) from either RWGT2 or CHO/TGF-alpha had no bone resorbing activity over control (%45Ca++ release, mean +/- SEM; control 23 +/- 1, RWGT2 19 +/- 1, CHO/TGF-alpha 23 +/- 1). However, the combination of 0.1% conditioned medium from RWGT2 and CHO/TGF-alpha significantly increased bone resorption (53 +/- 2, P < 0.05). These data demonstrate that the hypercalcemic effects of tumor-produced PTHrP are enhanced by TGF-alpha and that this effect may be due to increased bone resorption.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone

Related Publications

T A Guise, and T Yoneda, and A J Yates, and G R Mundy
November 1993, Bone and mineral,
T A Guise, and T Yoneda, and A J Yates, and G R Mundy
June 1995, The Journal of clinical investigation,
T A Guise, and T Yoneda, and A J Yates, and G R Mundy
October 1998, American journal of hematology,
T A Guise, and T Yoneda, and A J Yates, and G R Mundy
November 1985, The Journal of clinical investigation,
T A Guise, and T Yoneda, and A J Yates, and G R Mundy
December 1990, The American journal of physiology,
T A Guise, and T Yoneda, and A J Yates, and G R Mundy
March 1997, Endocrinology,
T A Guise, and T Yoneda, and A J Yates, and G R Mundy
May 1985, Science (New York, N.Y.),
Copied contents to your clipboard!