Characterization of growth hormone and prolactin produced by human pituitary in culture. 1977

J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek

Fragments of a pituitary tumor from a patient with acromegaly were grown in tissue culture. The tumor secreted both growth hormone and prolactin,which were recovered in high concentrations. The nonpurified hormones were characterized and compared to their respective counterparts obtained by extraction from normal pituitaries obtained at autopsy. The tissue culture and pituitary extracted hormones were eluted from Sephadex G-100 with the same partition coefficients. Growth hormone from both sources showed parallel dose-response displacement curves, by logit-log transformation, in both specific immunoassay and in a specific lymphocyte binding assay. Prolactin from both sources was compared in specific immunoassay using three different antisera. Parallel logit-log displacement curves were seen with one antiserum, while the other two antisera yielded non-parallel curves, indicating structural differences between prolactin from the two sources. Quantitative polyacrylamide gel electrophoresis was performed using multiphasic buffer systems previously developed for characterization of each hormone. By the criteria of joint 95% confidence envelopes of retardation co-efficient and relative free mobility, tissue culture growth hormone and prolactin were indistinguishable from their pituitary-extracted counterparts. This study demonstrates that, prior to purification, tissue culture derived hormone can be characterized by multiple criteria and compared to a standard preparation. Structural differences can be detected, as in the case of prolactin. When the hormones are indistinguishable, as in the case of growth hormone, it becomes worthwhile to increase the scale of tissue cultured production, with the prospect that tissue culture may serve as a source of hormone for both experimental and therapeutic use.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000236 Adenoma A benign epithelial tumor with a glandular organization. Adenoma, Basal Cell,Adenoma, Follicular,Adenoma, Microcystic,Adenoma, Monomorphic,Adenoma, Papillary,Adenoma, Trabecular,Adenomas,Adenomas, Basal Cell,Adenomas, Follicular,Adenomas, Microcystic,Adenomas, Monomorphic,Adenomas, Papillary,Adenomas, Trabecular,Basal Cell Adenoma,Basal Cell Adenomas,Follicular Adenoma,Follicular Adenomas,Microcystic Adenoma,Microcystic Adenomas,Monomorphic Adenoma,Monomorphic Adenomas,Papillary Adenoma,Papillary Adenomas,Trabecular Adenoma,Trabecular Adenomas
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
August 1978, Cell and tissue research,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
July 1977, Lancet (London, England),
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
January 1980, Acta oto-laryngologica,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
June 1977, Endocrinologia japonica,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
February 1982, Endocrinology,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
January 1967, Annales d'endocrinologie,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
January 1971, The Journal of clinical endocrinology and metabolism,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
July 1971, The Journal of clinical endocrinology and metabolism,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
January 1986, Annales d'endocrinologie,
J S Skyler, and A D Rogol, and W Lovenberg, and R A Knazek
February 1976, Endocrinology,
Copied contents to your clipboard!