The effects of localized inactivation of somatosensory cortex, area 2, on the cat motor cortex. 1993

R Izraeli, and L L Porter
Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.

Direct corticocortical afferents to the primary motor cortex (MI) originate in area 2 and area 3a of the primary somatosensory cortex (SI). The functional and morphological characteristics of the two pathways indicate that they relay different sensory signals to MI. The role of area 2 in relaying peripheral information to the cat MI was studied using electrophysiological techniques. Neurons that responded to stimulation of peripheral receptive fields on the contralateral forepaw were identified in MI by extracellular recordings. In area 2 of SI, neurons with the same receptive field modality and location as those in MI were also identified. Field potentials to electrical stimulation of the peripheral receptive field were recorded at the somatotopically matched sites in both MI and SI. Neuronal activity at the recording site in area 2 was blocked by injection of lidocaine, a local anesthetic. Changes in MI and area 2 responses were monitored before and after inactivation of area 2. Neuronal activity near the injection site was abolished, and evoked potentials (EPs) in area 2 were considerably diminished immediately following the injection. In MI, spontaneous activity levels were altered at some sites, but overall these changes were not significant. MI EPs recorded in response to peripheral stimulation were altered, and various patterns of change were noted in the early and late phases of the EPs. Changes often occurred in only one phase of the response. In some EPs, both early and late phases changed, but the direction and magnitude of change in one phase were not always linked to such changes in the other phase. Both increases and decreases in the amplitude and the area of each phase were observed. The morphological characteristics of the projection were reviewed and related to the findings in the study. It is proposed that inherent features of the pathway may account for the variable patterns of change that were observed.

UI MeSH Term Description Entries
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs

Related Publications

R Izraeli, and L L Porter
August 1989, Journal of neurophysiology,
R Izraeli, and L L Porter
January 1964, Acta physiologica Scandinavica,
R Izraeli, and L L Porter
November 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R Izraeli, and L L Porter
October 1983, Journal of neurophysiology,
R Izraeli, and L L Porter
August 1986, Brain research,
R Izraeli, and L L Porter
March 1978, Journal of neurophysiology,
Copied contents to your clipboard!