Structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius in the rat. 1993

F Esteves, and D Lima, and A Coimbra
Institute of Histology and Embryology, Faculty of Medicine, University of Oporto, Porto, Portugal.

The structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius (NTS) were studied. Upon injections of cholera toxin subunit B (CTb) into the caudal part of the NTS, including its lateral and medial portions, labeled cells occurred bilaterally in laminae I, IV-VII, and X, and the lateral spinal nucleus (LSN). After injections into the lateral portion alone, only a few cells were labeled in laminae V, VII, and X, and the LSN, and none in the superficial dorsal horn. Of 1882 labeled marginal cells, 38% belonged to the flattened type, 37% to the pyramidal type, and 25% to the fusiform type. Flattened and pyramidal cells were labeled in considerably greater numbers than those reported when other supraspinal targets of these cells were injected with CTb. Since cells in the NTS are known to be under marked gamma-aminobutyric acidergic (GABA-ergic) inhibition, it is possible that only strong input conveyed by great numbers of flattened and pyramidal cells is capable of overcoming that barrier. Fusiform cells were labeled in numbers similar to those observed previously after tracer injections into the two other targets of this neuronal type, the parabrachial nuclei and the lateral reticular nucleus. Considering that these regions, as well as the NTS, control cardiovascular and respiratory functions, it is suggested that fusiform cells transmit noxious input that will influence autonomic reflexes processed in the three nuclei.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D005930 Glossopharyngeal Nerve The 9th cranial nerve. The glossopharyngeal nerve is a mixed motor and sensory nerve; it conveys somatic and autonomic efferents as well as general, special, and visceral afferents. Among the connections are motor fibers to the stylopharyngeus muscle, parasympathetic fibers to the parotid glands, general and taste afferents from the posterior third of the tongue, the nasopharynx, and the palate, and afferents from baroreceptors and CHEMORECEPTOR CELLS of the carotid sinus. Cranial Nerve IX,Ninth Cranial Nerve,Cranial Nerve IXs,Cranial Nerve, Ninth,Cranial Nerves, Ninth,Glossopharyngeal Nerves,Nerve, Glossopharyngeal,Nerve, Ninth Cranial,Nerves, Glossopharyngeal,Nerves, Ninth Cranial,Ninth Cranial Nerves
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

F Esteves, and D Lima, and A Coimbra
September 2007, The Journal of comparative neurology,
F Esteves, and D Lima, and A Coimbra
January 1995, Somatosensory & motor research,
F Esteves, and D Lima, and A Coimbra
November 1999, The Journal of comparative neurology,
F Esteves, and D Lima, and A Coimbra
October 2007, Autonomic neuroscience : basic & clinical,
F Esteves, and D Lima, and A Coimbra
April 2014, The Journal of physiology,
F Esteves, and D Lima, and A Coimbra
April 1995, The American journal of physiology,
Copied contents to your clipboard!