Female circulating sex hormones and hippocampal sympathetic ingrowth. 1993

L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
Department of Neurology, Veterans Administration, Birmingham, AL.

Following cholinergic denervation of the hippocampal formation, via medial septal (MS) lesions, sympathetic fibers, originating from the superior cervical ganglia, growth into the hippocampus. Previous studies have demonstrated a sexually dimorphic effect of this neuronal rearrangement on recovery of a spatial-learning task, with this rearrangement being detrimental in male but protective in female rats. Circulating male sex hormones were found to interact with this effect in male animals. In this study we assessed the role of circulating female sex hormones on the behavioral and biochemical effects of hippocampal sympathetic ingrowth (HSI). For the behavioral studies female rats underwent either sham ovariectomy (sham OVARX) or OVARX and were taught a standard radial-8-arm maze task. Following attainment of criterion, animals underwent one of three surgical procedures: sham surgery; MS lesions+sham ganglionectomy (MS); HSI group; MS lesions+ganglionectomy (MSGx). As in our previous study, animals with HSI (i.e. MS group) were found to recover learning faster (in fact, these animals did not differ from controls) than animals with MS lesions without HSI. Gonadal status did not affect this behavioral recovery. For the biochemical studies hippocampal norepinephrine (NE) and choline acetyltransferase (ChAT) were measured in animals sham OVARX and OVARX, 8-12 weeks after the neurosurgical procedure. MS lesions (i.e. MSGx; MS) were found to reduce ChAT activity, regardless of circulating sex hormones. In controls NE levels were similar between OVARX and sham OVARX. NE levels were markedly elevated in the OVARX MS group compared to all other groups including sham OVARX. In the MSGx groups, NE levels were reduced compared to controls, while comparisons between these groups revealed a significant reduction in NE levels in the OVARX MSGx group compared to sham OVARX MSGx group. These studies suggest that female circulating sex hormones interact with brain injury in a very complex manner. However, this interaction does not appear to mediate the changes in behavior observed after HSI.

UI MeSH Term Description Entries
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D011939 Mental Recall The process whereby a representation of past experience is elicited. Recall, Mental
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
June 1983, Brain research,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
August 2001, Brain research,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
July 1995, Brain research,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
October 1972, Horumon to rinsho. Clinical endocrinology,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
May 1946, Seminar,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
December 1951, Bollettino della Societa italiana di biologia sperimentale,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
March 1986, Experimental neurology,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
January 2003, Medicinski pregled,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
October 1948, L'echo medical du nord,
L E Harrell, and A Peagler, and D S Parsons, and J Litersky, and T S Barlow
September 2005, Eye (London, England),
Copied contents to your clipboard!