The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy. 1993

R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892.

The high-resolution three-dimensional solution structure of recombinant human interleukin-4 (IL-4), a protein of approximately 15 kDa which plays a key role in the regulation of B and T lymphocytes, has been determined using three- and four-dimensional heteronuclear NMR spectroscopy. The structure is based on a total of 2973 experimental NMR restraints, comprising 2515 approximate interproton distance restraints, 102 distance restraints for 51 backbone hydrogen bonds, and 356 torsion angle restraints. A total of 30 structures was calculated by means of hybrid distance geometry-simulated annealing, and the atomic rms distribution about the mean coordinate positions for residues 8-129 is 0.44 +/- 0.03 A for the backbone atoms, 0.83 +/- 0.03 A for all atoms, and 0.51 +/- 0.04 A for all atoms excluding disordered side chains. The N- and C-terminal residues (1-7 and 130-133, respectively) appear to be disordered. The structure of IL-4 is dominated by a left-handed four-helix bundle with an unusual topology comprising two overhand connections. The linker elements between the helices are formed by either long loops, small helical turns, or short strands. The latter include a mini anti-parallel beta-sheet. A best fit superposition of the NMR structure of IL-4 with the 2.25 A resolution crystal structure [Wlodawer, A., Pavlovsky, A., & Gutschina, A. (1992) FEBS Lett. 309, 59-64] yields a backbone atomic rms difference of 1.37 A which can be mainly attributed to tighter packing of the helices in the crystal structure. This is indicated by an approximately 20% reduction in the axial separation of three pairs of helices (alpha A-alpha C, alpha A-alpha D, and alpha C-alpha D) in the crystal structure relative to the NMR structure and may reflect the greater flexibility of the molecule in solution which is reduced in the crystal due to intermolecular contacts. Comparison of the NMR structure of IL-4 with the X-ray structures of two other related proteins, granulocyte-macrophage colony stimulating factor [Diedrichs, K., Boone, T., & Karplus, P. A. (1992) Science 254, 1779-1782] and human growth hormone [de Vos, A. M., Ultsch, M., & Kossiakoff, A. A. (1992) Science 255, 306-312], that bind to the same hematopoietic superfamily of cell surface receptors reveals a remarkably similar topological fold, despite the absence of any significant overall sequence identity, and substantial differences in the relative lengths of the helices, the lengths and the nature of the various connecting elements, and the pattern and number of disulfide bridges.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
October 1996, Biochemistry,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
April 1994, Journal of molecular biology,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
December 1997, Journal of molecular biology,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
January 1995, Biochemistry,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
March 1991, Biochemistry,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
August 1990, Journal of molecular biology,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
February 1993, Journal of molecular biology,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
August 1990, Journal of molecular biology,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
October 1994, Protein science : a publication of the Protein Society,
R Powers, and D S Garrett, and C J March, and E A Frieden, and A M Gronenborn, and G M Clore
December 1995, Journal of molecular biology,
Copied contents to your clipboard!