Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. 1993

M R Koller, and S G Emerson, and B O Palsson
Aastrom Biosciences, Inc, Ann Arbor, MI 48106.

There is a growing consensus that clinical practice in the areas of bone marrow (BM) transplantation and gene therapy will rely on the ex vivo expansion of hematopoietic cells. We report here on the development of continuously perfused culture systems (bioreactor systems) that expand human stem and progenitor cells from BM mononuclear cell (MNC) populations obtained without cell enrichment. In three separate experiments, 10 bioreactors were each inoculated with 3 x 10(7) BM MNC from patients undergoing marrow harvest for autologous transplantation. At various times thereafter (between days 6 and 16), duplicate bioreactors were harvested and cells were analyzed. The bioreactors contained three cell populations that were analyzed separately: nonadherent cells; cells that were loosely adherent to the endogenously formed stromal layer; and an adherent cell layer that required trypsinization for removal. Total cell numbers increased continuously to give an overall 10-fold (range, 8- to 11-fold) expansion by day 14. The adherent stromal layer significantly expanded to more than 2 x 10(7) cells, but remained less than 6% of the total cell population. Colony-forming unit-granulocyte-macrophage (CFU-GM) numbers expanded 21-fold (range, 12- to 34-fold) by day 14 and, because this expansion was greater than that for total cells, CFU-GM were enriched by as much as fourfold by day 14. Burst-forming unit-erythroid (BFU-E) numbers peaked earlier than did CFU-GM numbers, with a 12-fold (range, 6- to 18-fold) expansion obtained on day 8. In contrast to CFU-GM, which were predominantly nonadherent, BFU-E were more evenly distributed between the three cell populations. Stem cell activity was measured by the long-term culture-initiating cell (LTC-IC) limiting dilution assay. The number of LTC-IC per reactor consistently increased with time in all cultures, resulting in a 7.5-fold (range, 3.4- to 9.8-fold) expansion. In summary, more than 3 billion cells, containing 12 million CFU-GM, were reproducibly generated from the equivalent of a 10 to 15 ml BM aspirate. These data indicate that small numbers of BM MNC can be readily expanded ex vivo in continuous perfusion cultures, and that such ex vivo expansion may have direct applications in clinical and experimental BM transplantation.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004906 Erythrocyte Count The number of RED BLOOD CELLS per unit volume in a sample of venous BLOOD. Blood Cell Count, Red,Erythrocyte Number,Red Blood Cell Count,Count, Erythrocyte,Counts, Erythrocyte,Erythrocyte Counts,Erythrocyte Numbers
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M R Koller, and S G Emerson, and B O Palsson
March 1993, Bio/technology (Nature Publishing Company),
M R Koller, and S G Emerson, and B O Palsson
April 2009, Journal of proteome research,
M R Koller, and S G Emerson, and B O Palsson
March 2000, Proceedings of the National Academy of Sciences of the United States of America,
M R Koller, and S G Emerson, and B O Palsson
March 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
M R Koller, and S G Emerson, and B O Palsson
September 2008, Tissue engineering. Part C, Methods,
M R Koller, and S G Emerson, and B O Palsson
May 1998, British journal of haematology,
M R Koller, and S G Emerson, and B O Palsson
January 2020, Stem cells international,
M R Koller, and S G Emerson, and B O Palsson
December 2000, Zhongguo shi yan xue ye xue za zhi,
M R Koller, and S G Emerson, and B O Palsson
April 1989, Journal of biological response modifiers,
M R Koller, and S G Emerson, and B O Palsson
January 1996, Blood,
Copied contents to your clipboard!