Activation of serotonin1A receptors inhibits midbrain periaqueductal gray neurons of the rat. 1993

M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
Department of Physiology, College of Medicine, University of Cincinnati, OH 45267-0576.

The midbrain periaqueductal gray (PAG) is involved in a variety of functions including pain modulation, vocalization, autonomic control, fear and anxiety. This area contains serotonin receptors, particularly 5-HT1A that are known to play a role in the above functions. The goals of this study were to characterize the effects of 8-OH-DPAT, a selective 5-HT1A agonist, on the firing characteristics and membrane properties of PAG neurons. Both in vivo and in vitro preparations were used. The effects of 8-OH-DPAT on baseline activity of 91 neurons were tested in the in vivo preparation. In 50/91 cells, 8-OH-DPAT produced a decrease in the firing rate that ranged between 21 and 98% (mean +/- S.E.M. decrease of 49 +/- 1.9%). This inhibitory effect was dose dependent and could be blocked by spiperone. In 10/91 cells, 8-OH-DPAT produced an increase in the firing rate that ranged between 13 and 290%, with mean increase of 83 +/- 7.4%. The baseline firing rate of the remaining 31 cells was not affected by 8-OH-DPAT. In the PAG slice preparation, the effects of 8-OH-DPAT on synaptic and membrane properties of 17 PAG neurons were tested using whole-cell voltage clamp-recording procedures. In 14 cells, application of 8-OH-DPAT produced hyperpolarization that ranged between 6 and 21 mV, with mean of 8.4 +/- 2.0 mV. This hyperpolarization was associated with a decrease in membrane impedance that ranged between 8 and 45%, with mean decrease of 21.6 +/- 4.5%. The remaining three neurons did not respond to 8-OH-DPAT.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013134 Spiperone A spiro butyrophenone analog similar to HALOPERIDOL and other related compounds. It has been recommended in the treatment of SCHIZOPHRENIA. Spiroperidol,Spiroperone
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
January 2008, Advances in experimental medicine and biology,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
November 1998, Journal of neurophysiology,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
August 2015, Pharmacology, biochemistry, and behavior,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
December 1992, Brain research bulletin,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
February 1990, Pain,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
October 2021, Iranian journal of basic medical sciences,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
January 2013, Neural plasticity,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
June 2010, European journal of pharmacology,
M M Behbehani, and H Liu, and M Jiang, and R Y Pun, and M T Shipley
November 2011, Neuroreport,
Copied contents to your clipboard!