The distribution of PS integrins, laminin A and F-actin during key stages in Drosophila wing development. 1993

D Fristrom, and M Wilcox, and J Fristrom
Department of Molecular and Cell Biology, University of California, Berkeley 94720.

We first summarize wing development during metamorphosis of Drosophila and identify four critical steps in the conversion of a folded single layered wing disc to a flat bilayered wing. Each step occurs twice, once during the 12 hour prepupal period and again during the 84 hour pupal period. (1) Apposition in which basal surfaces of dorsal and ventral epithelia come close together. (2) Adhesion in which basal junctions form between the apposed basal surfaces. (3) Expansion in which wing area increases as a result of cells flattening. (4) Separation in which dorsal and ventral epithelia are separated by a bulky extracellular matrix but remain connected by slender cytoplasmic processes containing the microtubules and microfilaments of the transalar cytoskeleton. Disc ultrastructure is correlated with the distribution of the beta chain of integrin, laminin A, and filamentous actin for each key stage of pupal development. Integrin and laminin exhibit a mutually exclusive distribution from the adhesion stage onwards. Integrin is present on the basal surface of intervein cells but not on vein cells whereas laminin A is absent from the basal surfaces of intervein cells but is present on vein cells. We conclude that laminin is not a ligand for integrin in this context. During apposition and adhesion stages integrin is broadly distributed over the basal and lateral surfaces of intervein cells but subsequently becomes localized to small basal foci. These foci correspond to basal contact zones between transalar processes. The distribution of filamentous actin is dynamic, changing from an apical distribution during hair morphogenesis to a basal distribution as the transalar cytoskeleton develops. Basal adherens-type junctions are first evident during the adhesion stage and become closely associated with the transalar cytoskeleton during the separation stage. Thus, basal junction formation occurs in two discrete steps; intercellular connections are established first and junction/cytoskeletal connections are formed about 20 hours later. These observations provide a basis for future investigations of integrin mediated adhesion in vivo.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014921 Wings, Animal Movable feathered or membranous paired appendages by means of which certain animals such as birds, bats, or insects are able to fly. Animal Wing,Animal Wings,Wing, Animal
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin

Related Publications

D Fristrom, and M Wilcox, and J Fristrom
December 1989, Development (Cambridge, England),
D Fristrom, and M Wilcox, and J Fristrom
October 1998, Annals of the New York Academy of Sciences,
D Fristrom, and M Wilcox, and J Fristrom
November 1989, Nature,
D Fristrom, and M Wilcox, and J Fristrom
October 1996, Development (Cambridge, England),
D Fristrom, and M Wilcox, and J Fristrom
January 2011, PloS one,
D Fristrom, and M Wilcox, and J Fristrom
December 1995, Immunology and cell biology,
D Fristrom, and M Wilcox, and J Fristrom
February 1989, Cell,
D Fristrom, and M Wilcox, and J Fristrom
January 2013, The International journal of developmental biology,
D Fristrom, and M Wilcox, and J Fristrom
January 1984, The Journal of cell biology,
D Fristrom, and M Wilcox, and J Fristrom
January 1992, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!