The developing caudate nucleus in the euthyroid and hypothyroid rat. 1977

E J Lu, and W J Brown

The basal ganglia are presently implicated in learning, and thyroid deficiency induced neonatally is known to affect mentation. The effects of such a deficiency on the developing causate nucleus might be used to provide insight into structure and function of the normal subcortical brain, as well as possible influences of these extrapyramidal structures on mental retardation. Propylthiouracil was added to the diet of lactating rat dams and observations of the developing caudate nuclei of normal hypothyroid rats were made at 8, 14, 20, 30 and 42 days by using various tissue stains and Golgi-Cox preparations. Seven different types of neurons were distinguished in the caudate nucleus. Differences in the size of cell somata and the varying morphology of axons and dendrites were criteria used to make distinctions. Normally, the nucleus acquires cytoarchitectural complexity during the first three postnatal weeks. Within this period, neuron incidence increases in the caudate neuropil with age while the germinal matrix density decreases. Neuron accumulation reaches a plateau after the third week and cell migration is essentially complete at the end of the first postnatal month as shown by computer analysis of Nissl stained cell counts. Branching of cellular processes, attainment of receptor spines and complexity of the fiber network also appeared during this period. Retardation of structural development with thyroid hormone deficiency was shown by decreased numbers of neurons, inhibition of dendritic arborization, decreased numbers of dendritic spines and a reduced complexity of axonal plexuses. Thyroid deficiency delays cell migration during the first three weeks when compared to age-matched normal controls. The lack of thyroid hormone does not appear to influence the size of neuron somata, and the extent of related dendritic fields, nor does hypothyroidism affect a specific cell type population. Generalized disturbances of caudate nuclear morphological maturation are caused by the deficiency. An apparent compensatory process, including a spurt of neural growth and differentiation, takes place in the period between days 14 and 30 in the deficient animals and a seemingly "normal" caudate cytoarchitecture is seen after the third postnatal week. Quantitative data, however, show that this rapid "catch up" process is inadequate. The developmental imperfection of the caudate nucleus which persists might be a part of the underlying substrate for the mental retardation, disturbed motor performance and perceptual handicaps which are found in the human patient.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001699 Biometry The use of statistical and mathematical methods to analyze biological observations and phenomena. Biometric Analysis,Biometrics,Analyses, Biometric,Analysis, Biometric,Biometric Analyses
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4

Related Publications

E J Lu, and W J Brown
October 1973, Journal of comparative and physiological psychology,
E J Lu, and W J Brown
December 1965, Acta physiologica Scandinavica,
E J Lu, and W J Brown
April 1979, The Journal of biological chemistry,
E J Lu, and W J Brown
April 1960, Medizinische Klinik,
E J Lu, and W J Brown
October 1970, Life sciences. Pt. 1: Physiology and pharmacology,
E J Lu, and W J Brown
August 1963, Science (New York, N.Y.),
E J Lu, and W J Brown
March 1984, Hearing research,
Copied contents to your clipboard!