The specificity of re-innervation by identified sensory and motor neurons in the leech. 1977

D C Van Essen, and J K Jansen

Re-innervation of skin and muscle by identified sensory and motor neurons in segmental ganglia of the leech was studied using physiological techniques. After lesions of peripheral nerves, sensory axons which re-innervated the skin always regained sensitivity to their original stimulus modality (touch, pressure or noxious stimuli). Motor neurons invariably re-innervated the appropriate type of body wall muscle, such as longitudinal or circular muscle layers. Both sensory and motor axons usually returned to the appropriate region of the body wall (dorsal, lateral, or ventral) when regenerating after a nerve crush or cut. This capacity was lost, however, when growth along old nerve branches was prevented by evulsing long segments of the nerve. Re-innervation usually occurred by way of growth of new axons all the way to the periphery, but in a few cases reconnection with the surviving distal segment of the original axon had taken place. The specificity of re-innervation can be accounted for by a combination of selective growth along appropriate nerve branches and specific interactions with target tissues.

UI MeSH Term Description Entries
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

D C Van Essen, and J K Jansen
August 1979, The Journal of comparative neurology,
D C Van Essen, and J K Jansen
November 2013, Journal of visualized experiments : JoVE,
D C Van Essen, and J K Jansen
July 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D C Van Essen, and J K Jansen
March 2001, Progress in neurobiology,
D C Van Essen, and J K Jansen
January 1991, Comparative biochemistry and physiology. A, Comparative physiology,
D C Van Essen, and J K Jansen
March 2021, BMC genomics,
D C Van Essen, and J K Jansen
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
D C Van Essen, and J K Jansen
February 1987, The Journal of comparative neurology,
D C Van Essen, and J K Jansen
January 2003, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
Copied contents to your clipboard!