Sequence analysis of the left end of the Bacillus subtilis bacteriophage SPP1 genome. 1993

S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
Max-Planck-Institut für molekulare Genetik, Berlin, Germany.

The left end of the genome of Bacillus subtilis bacteriophage SPP1 is represented by EcoRI DNA fragments 12 and 1 (EcoRI-12 and EcoRI-1). A number of different deletions were identified in EcoRI-1. A detailed physical and genetic map of EcoRI-1 from wild-type (wt) phage and SPP1 deletion mutants was constructed. Genes encoding essential products involved in late and early stages of phage DNA metabolism were mapped at the left and right ends of the 8.5-kb EcoRI-1, respectively. Deletions fell within the internal 5157-bp DNA segment of EcoRI-1. The nucleotide (nt) sequence of this region and of the endpoints of two deletions, delta X and delta L, were determined. The nt sequence of the junctions in SPP1 delta X and SPP1 delta L showed that, in these deletions, a segment of DNA between short directly repeated sequences of 10 and 13 bp, located 3427 and 4562 bp apart in the wt sequence, had been eliminated. In both cases, the copy of the repeated sequence was retained in the deletion mutant, consistent with the hypothesis that the deletions originated by homologous intramolecular recombination. The corresponding region in wt phage had fifteen presumptive open reading frames (orfs) and the previously identified SPP1 early promoters (PE1). The poor growth phenotype associated with the SPP1 deletion mutants was attributed to premature transcriptional read through from promoter(s) of the early region into late operon brought into close vicinity of the late genes due to the deletion event.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide

Related Publications

S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
December 2018, Viruses,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
May 1990, Nucleic acids research,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
December 1997, Gene,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
April 1982, Journal of virology,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
December 1974, Journal of virology,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
January 1981, Molecular & general genetics : MGG,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
May 1997, Journal of molecular biology,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
August 1972, Journal of virology,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
November 1983, Journal of general microbiology,
S Chai, and U Szepan, and G Lüder, and T A Trautner, and J C Alonso
January 2012, Virology,
Copied contents to your clipboard!