Molecular analysis of spontaneous nephrotropic anti-laminin antibodies in an autoimmune MRL-lpr/lpr mouse. 1993

M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
Penn Center for Molecular Studies, University of Pennsylvania School of Medicine, Philadelphia 19104.

To explore the genetic relationship between anti-laminin and anti-DNA autoantibodies (autoAb), VH gene and gene family expression were determined among autoAb derived from an individual 6-mo-old MRL-lpr/lpr mouse. Whereas 85% of the anti-DNA Ig were identified by one of two VH family probes, 7183 and VHJ558, none of the anti-laminin antibodies (Ab) examined were recognized by these probes. Subsequent V region sequence analysis of three of the anti-laminin Ab revealed that they in fact utilized a J558 VH gene (VH50). Furthermore, FR2 and CDR2 oligonucleotide probes complementary to VH50 recognized multiple anti-laminin Ab by Northern blot analysis; the FR2 probe recognized two control anti-DNA Ab, but neither probe recognized anti-DNA Ab from the same mouse. Polymerase chain reaction amplification of MRL-lpr/lpr genomic liver DNA using primers generated from VH50 and Vk50 sequences indicated that all three anti-laminin Ig have a single replacement mutation in both their VH and Vk genes. Search of the nucleic acid databases revealed that both germline VH and Vk genes are expressed unmutated by murine lupus anti-dsDNA autoAb, previously sequenced in other laboratories. Sequence comparisons suggest that differences in anti-DNA and anti-laminin reactivity may be dependent upon somatically generated differences in the CDR3 regions of the H and L chains. The results indicate that lupus anti-laminin Ab can arise from distinct B cell populations but express the same unmutated germline V region genes as lupus anti-dsDNA autoAb. They further raise the possibility that these distinct B cell populations may be activated and expanded either: independently, by distinct Ig receptor ligands such as the Ag, laminin and DNA; or simultaneously, by a common ligand such as an anti-Id recognizing a common V region epitope.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D008232 Lymphoproliferative Disorders Disorders characterized by proliferation of lymphoid tissue, general or unspecified. Duncan's Syndrome,X-Linked Lymphoproliferative Syndrome,Duncan Disease,Epstein-Barr Virus Infection, Familial Fatal,Epstein-Barr Virus-Induced Lymphoproliferative Disease In Males,Familial Fatal Epstein-Barr Infection,Immunodeficiency 5,Immunodeficiency, X-Linked Progressive Combined Variable,Lymphoproliferative Disease, X-Linked,Lymphoproliferative Syndrome, X-Linked, 1,Purtilo Syndrome,X-Linked Lymphoproliferative Disease,X-Linked Lymphoproliferative Disorder,Disease, Duncan,Disease, X-Linked Lymphoproliferative,Diseases, X-Linked Lymphoproliferative,Disorder, Lymphoproliferative,Disorder, X-Linked Lymphoproliferative,Disorders, Lymphoproliferative,Disorders, X-Linked Lymphoproliferative,Epstein Barr Virus Induced Lymphoproliferative Disease In Males,Epstein Barr Virus Infection, Familial Fatal,Familial Fatal Epstein Barr Infection,Immunodeficiency 5s,Immunodeficiency, X Linked Progressive Combined Variable,Lymphoproliferative Disease, X Linked,Lymphoproliferative Diseases, X-Linked,Lymphoproliferative Disorder,Lymphoproliferative Disorder, X-Linked,Lymphoproliferative Disorders, X-Linked,Lymphoproliferative Syndrome, X-Linked,Lymphoproliferative Syndromes, X-Linked,Purtilo Syndromes,Syndrome, Purtilo,Syndrome, X-Linked Lymphoproliferative,Syndromes, Purtilo,Syndromes, X-Linked Lymphoproliferative,X Linked Lymphoproliferative Disease,X Linked Lymphoproliferative Disorder,X Linked Lymphoproliferative Syndrome,X-Linked Lymphoproliferative Diseases,X-Linked Lymphoproliferative Disorders,X-Linked Lymphoproliferative Syndromes
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene

Related Publications

M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
July 1985, Clinical and experimental immunology,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
April 1993, Arthritis and rheumatism,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
December 1994, Journal of immunology (Baltimore, Md. : 1950),
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
February 2000, Journal of immunological methods,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
September 1987, Brain, behavior, and immunity,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
August 2009, International immunology,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
November 1993, Physiology & behavior,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
November 1986, Immunology letters,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
December 1990, Immunology,
M H Foster, and J Sabbaga, and S R Line, and K S Thompson, and K J Barrett, and M P Madaio
March 1993, Acta oto-laryngologica,
Copied contents to your clipboard!