Skeletal muscle function of 15 patients with myotonic dystrophy (dystrophia myotonica, DM) was investigated using 31P magnetic resonance spectroscopy to evaluate bioenergetics and intracellular pH at rest and during exercise and recovery. Results from DM patients, normal controls and mitochondrial myopathy patients were compared in order to assess the possible contribution of abnormal mitochondrial metabolism to muscle dysfunction in DM. In resting DM muscle, intracellular pH (pHi) was normal, but there were significant elevations in the concentration ratios of Pi/ATP, phosphomonoesters/ATP and phosphodiesters/ATP. In patients with the most severe exercise intolerance the phosphocreatine/ATP ratio was also reduced. Resting muscle of 11 mitochondrial myopathy patients showed similar changes to those of the most exercise-intolerant DM patients. In exercising DM muscle, energy stores were rapidly depleted as in mitochondrial myopathy. Muscle acidified in all subjects, but in DM the decrease in pHi was less than in normal muscle. Recovery half-times for phosphocreatine, Pi and ADP were normal in DM but slow in mitochondrial myopathy. The initial rate of phosphocreatine repletion after exercise was rapid in DM, consistent with high [ADP], but slow in mitochondrial myopathy in spite of elevated [ADP]. Because recovery is an oxidative process, we conclude that there was no decrease in the oxidative capacity of the muscles in this group of DM patients. In the subjects in whom it could be measured, the rate of recovery of intracellular pH was greater in the 3 DM patients (0.14, 0.15 and 0.16 U/min) than in the 7 normal controls (0.08-0.12 U/min, mean 0.10). The results do not rule out a minor abnormality in glycogenolysis, but they suggest that the failure to acidify normally during exercise is probably due to rapid proton efflux.