Identification of the site of interruption in relaxed circles producing during bacteriophage lambda DNA circle replication. 1977

R C Reuben, and A Skalka

The DNA that accumulates in the lambda infection restricted to the early (circular) stage of replication consists of approximately two-thirds covalently closed circles and one-third relaxed circles bearing a single interruption in either strand of the duplex. The latter molecules are presumed to be a unique class in that the interruption is not repairable by DNA polymerase and ligase. Preferential radioisotopic labeling of the region immediately adjacent to the interruption, followed by hybridization to sheared fragments of the lambda chromosome with varying guanine plus cytosine content, suggested that the nick resides at the position of the mature molecular ends of the lambda chromosome. Digestion of the labeled molecules with restriction enzymes and reconstruction experiments in which Hershey circles were generated by annealing of interrupted strands isolated from the relaxed circles support this interpretation. The results indicate that the relaxed circles consist of a population containing one interruption in either of the two strands of the duplex jointly representing the two "nicks" contained in Hershey circles (in which the cohesive ends are annealed). These molecules could result from the inability of the maturation function to make the required staggered endonucleolytic cuts when the DNA substrate is a monomeric circle rather than a multimeric linear molecule. Alternatively, this interruption could be the result of an endonucleolytic cutting event critical to DNA replication.

UI MeSH Term Description Entries
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA

Related Publications

R C Reuben, and A Skalka
January 1977, Current topics in microbiology and immunology,
R C Reuben, and A Skalka
January 1983, Cold Spring Harbor symposia on quantitative biology,
R C Reuben, and A Skalka
January 1984, Cold Spring Harbor symposia on quantitative biology,
R C Reuben, and A Skalka
December 1967, Proceedings of the National Academy of Sciences of the United States of America,
R C Reuben, and A Skalka
January 1999, Postepy biochemii,
R C Reuben, and A Skalka
November 1974, Biochemical and biophysical research communications,
R C Reuben, and A Skalka
October 1982, Proceedings of the National Academy of Sciences of the United States of America,
R C Reuben, and A Skalka
February 1969, Journal of molecular biology,
R C Reuben, and A Skalka
December 1969, Biochimica et biophysica acta,
Copied contents to your clipboard!