Extracellular ATP4- modulates organic anion transport by rat hepatocytes. 1993

C G Campbell, and D C Spray, and A W Wolkoff
Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461.

The hepatocyte has an organic anion transport system that recognizes compounds such as bilirubin and sulfobromophthalein. These anions circulate bound tightly to albumin from which they are extracted rapidly by hepatocytes by an electroneutral process that requires extracellular inorganic anions such as Cl- for activity. Transport activity is reduced by depletion of intracellular ATP, but whether ATP interacts directly with this transporter is not known. In this study, the influence of extracellular ATP on the hepatocyte organic anion transport mechanism has been characterized. In the presence of 2.5 mM Ca2+ and 2 mM Mg2+, initial uptake of [35S]sulfobromophthalein was reduced by 50% at 1 mM ATP. In the absence of divalent cations sensitivity to ATP was 10-fold greater. Other nucleotides including UTP, CTP, GTP, ADP, AMP, and AMP-PCP (adenosine 5'-(beta,gamma-methylene)triphosphate) were inactive. Decreased transport activity was rapidly reversible, was non-competitive with respect to ATP, did not require ATP hydrolysis, and did not correlate with P2y purinergic receptor activity. Differential activity of ATP on sulfobromophthalein transport in the presence and absence of divalent cations was not due to ecto-ATPase activity but rather to alteration in [ATP4-]. Although an ATP4- receptor in macrophages mediates increased cellular permeability, reduced organic anion permeability is seen in hepatocytes. This effect is not seen in the hepatoma cell line HepG2. Modulation of activity of the organic anion transporter by extracellular ATP may have important pathophysiological consequences in conditions resulting in liver cell injury.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

C G Campbell, and D C Spray, and A W Wolkoff
November 2002, European journal of pharmacology,
C G Campbell, and D C Spray, and A W Wolkoff
October 1998, The Journal of pharmacology and experimental therapeutics,
C G Campbell, and D C Spray, and A W Wolkoff
October 2014, Comprehensive Physiology,
C G Campbell, and D C Spray, and A W Wolkoff
June 1995, Hepatology (Baltimore, Md.),
C G Campbell, and D C Spray, and A W Wolkoff
January 2000, Life sciences,
C G Campbell, and D C Spray, and A W Wolkoff
January 2000, The Journal of biological chemistry,
C G Campbell, and D C Spray, and A W Wolkoff
September 1994, The American journal of physiology,
C G Campbell, and D C Spray, and A W Wolkoff
April 1987, The Journal of clinical investigation,
C G Campbell, and D C Spray, and A W Wolkoff
September 1998, Toxicology letters,
Copied contents to your clipboard!