Halothane regulates G-protein-dependent phospholipase C activity in turkey erythrocyte membranes. 1993

T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.

The ability of halothane to stimulate phospholipase C (PLC) was examined in turkey erythrocyte membranes prepared from [3H]inositol-labeled turkey erythrocytes by measuring [3H]inositol phosphate formation ([3H]InsP) in the presence and absence of G-protein activation. In the presence of guanosine 5'-3-O-(thio)triphosphate) (GTP gamma S), halothane (0.5-10 mM) caused a dose-dependent activation of PLC. The EC50 value for halothane-induced PLC activation was 2.8 +/- 0.3 mM. Halothane (0.1-30 mM) had no effect on PLC activity in the absence of G-protein activation and did not affect Ca(2+)-dependent PLC activity. The activation of PLC by GTP gamma S occurred after an initial lag period of 60 s which was followed by a linear increase in [3H]InsP. Halothane dose-dependently decreased the lag period for GTP gamma S-induced PLC activation (minimal value 15 s) and increased the rate of [3H]InsP formation at all time points following this lag. As a result, halothane shifted the EC50 value for GTP gamma S-induced PLC activation to the left (4-fold) and increased its maximal response. Halothane also caused a dose-dependent activation of PLC in the presence of AlF4-. Half-maximal stimulation of AlF4(-)-activated PLC occurred with an EC50 value of 2.9 +/- 0.4 mM halothane, which is similar to the halothane dose giving half-maximal stimulation of PLC in the presence of GTP gamma S. At low doses (0.1-0.3 mM) halothane inhibited both isoproterenol- and adenosine 5'-O-(2-thiodiphosphate) (ADP beta S)-induced [3H]InsP formation, whereas at higher concentrations it stimulated PLC independent of the presence of these agonists. At concentrations chosen to reflect their different membrane/buffer partition coefficients, both hexanol (5 mM) and benzyl alcohol (20 mM) fluidized turkey erythrocyte membranes to the same degree as halothane (5 mM). However, these agents had no effect on GTP gamma S- or AlF(4-)-induced PLC activity, indicating that halothane-induced PLC activation was not secondary to changes in bulk lipid fluidity properties. Halothane also stimulated [3H]inositol bisphosphate and [3H]inositol trisphosphate formation in intact erythrocytes. These data demonstrate that the anesthetic halothane can stimulate G-protein-dependent PLC activity and modify the responsiveness of this signaling system to activation by receptor-linked agonists.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
October 1996, European journal of pharmacology,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
July 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
June 1992, The Biochemical journal,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
December 1989, Trends in pharmacological sciences,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
March 2002, Cellular signalling,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
January 1994, Methods in enzymology,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
July 1987, The Journal of biological chemistry,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
January 1994, Methods in enzymology,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
August 1989, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
T A Rooney, and R Hager, and C D Stubbs, and A P Thomas
June 1988, The Biochemical journal,
Copied contents to your clipboard!