Stimulus-induced dissociation of alpha subunits of heterotrimeric GTP-binding proteins from the cytoskeleton of human neutrophils. 1993

E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
Department of Medical Microbiology, University of Linköping, Sweden.

Previous studies on the mechanism responsible for terminating the generation of second messengers induced by chemotactic factor-receptor complexes have, on one hand, suggested a direct role of a GTP-binding protein(s) (G protein), and, on the other hand, proposed that there is a lateral segregation of the ligand-receptor complexes into G protein-depleted domains of the plasma membrane. In the present investigation, which addresses these apparently contradictory findings, we found that a substantial part of the alpha subunits of the Gn protein (Gn alpha) in unstimulated neutrophils were associated with a cytoskeletal fraction and that release of these subunits occurred upon stimulation with the chemotactic factor fMet-Leu-Phe. An identical Gn alpha release could also be induced by direct activation of G proteins with guanosine 5'-[gamma-thio]triphosphate or AIF4-. In contrast, the alpha subunits of the stimulatory G protein (Gs alpha) also found associated with the cytoskeletal fraction of unstimulated cells were not released by fMet-Leu-Phe stimulation. However, they were effectively released by direct G-protein activation with guanosine 5'-[gamma-thio]triphosphate. In addition, inhibition of the fMet-Leu-Phe-stimulated modulation of the actin network by pertussis toxin did not affect the fMet-Leu-Phe-induced release of Gn alpha from the cytoskeletal fraction. These observations indicate that fMet-Leu-Phe-induced activation of neutrophils involves a specific dissociation of Gn alpha from the cytoskeleton and that this release is not a consequence of the well-known effect of fMet-Leu-Phe on the cytoskeleton of neutrophils. The present data contribute ideas concerning the transducing properties of G proteins in cellular signaling and seem to reconcile the apparently contradictory concepts of how the cytoskeleton participates in the termination of the chemotactic-factor-induced generation of second messengers in human neutrophils.

UI MeSH Term Description Entries
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP

Related Publications

E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
November 1999, European journal of pharmacology,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
January 1995, Protein profile,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
January 1994, Protein profile,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
August 1990, Proceedings of the National Academy of Sciences of the United States of America,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
July 2006, Sheng li ke xue jin zhan [Progress in physiology],
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
February 1992, Biochemical and biophysical research communications,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
June 1994, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
August 2000, Genes & genetic systems,
E Särndahl, and G M Bokoch, and O Stendahl, and T Andersson
March 1995, Molecular and cellular biochemistry,
Copied contents to your clipboard!