CD4, CD8 and the role of CD45 in T-cell activation. 1993

J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
Bristol-Myers Squibb-PRI, Seattle.

CD4, CD8 and CD45 regulate the coupling of the T-cell receptor complex (CD3-TCR) to tyrosine kinase activation and phosphorylation of key substrates such as phospholipase C gamma 1. CD4 and CD8 contribute to activation signals through their cytoplasmic association with p56lck. Expression of the zeta-chain is required for functional synergy of the T-cell receptor with CD4 in the activation of phospholipase C gamma 1, which probably reflects an interaction between p56lck and zeta-associated kinase ZAP-70. CD45 expression is required for CD3-TCR signaling. CD45 may positively regulate signaling by dephosphorylating the carboxyl-terminal tyrosine of p56lck and p59fyn, and negatively regulate signaling by dephosphorylation of other TCR-associated substrates directly. One ligand for CD45 receptor has been identified as the B cell CD22 molecule. The positive and negative effects of CD45 are sensitive to the composition of CD45 in receptor complexes, and may be regulated by specific associations of CD45 isoforms with other receptors such as CD3-TCR, CD2 and CD4.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
January 1992, Annual review of immunology,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
January 1993, Advances in immunology,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
October 1997, Immunology and cell biology,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
July 2009, Biochemical and biophysical research communications,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
July 1988, Journal of immunology (Baltimore, Md. : 1950),
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
May 1991, Seminars in immunology,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
January 2013, Frontiers in immunology,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
September 2010, Journal of immunology (Baltimore, Md. : 1950),
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
October 1989, Immunological reviews,
J A Ledbetter, and J P Deans, and A Aruffo, and L S Grosmaire, and S B Kanner, and J B Bolen, and G L Schieven
January 2022, Applied bionics and biomechanics,
Copied contents to your clipboard!