Hippocampal and entorhinal glucose metabolism in relation to cholinergic theta rhythm. 1993

R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
Depto de Investigación, Hospital Ramón y Cajal, Madrid, Spain.

Hippocampal and entorhinal cortex glucose metabolism were studied by 14C-2-deoxyglucose (2-DG) autoradiography in anesthetized rats with and without continuous theta rhythm (theta). 2-Deoxyglucose changes in specific cytoarchitectonic regions were precisely assessed by n innovative approach. In the absence of theta there were areas with a higher glucose metabolism corresponding to neuropile regions at CA3, dentate gyrus, and subiculum, while the cellular layers always showed lower values. In the presence of theta, provoked by intraventricular injections of anticholinesterases (i.e., physostigmine) or curarimimetics (i.e., d-tubocurarine), 2-DG uptake showed two opposite significant changes in relation to controls: a) it increased in the outer zone of the molecular layer (inner blade) of the dentate gyrus, and in the stratum lacunosum-moleculare of CA3, suggesting an increase in perforant path input during theta rhythm; b) it decreased in the hilar dentate region. This noteworthy decrease in metabolic activity probably reflects an hilar inhibition by local circuits during theta rhythm generation.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013826 Theta Rhythm Brain waves characterized by a frequency of 4-7 Hz, usually observed in the temporal lobes when the individual is awake, but relaxed and sleepy. Rhythm, Theta,Rhythms, Theta,Theta Rhythms
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
March 2022, Biomedicines,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
February 2013, Nature neuroscience,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
January 1988, Proceedings of the Western Pharmacology Society,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
December 2017, Cell reports,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
December 1987, Brain research,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
January 2005, Hippocampus,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
January 1992, Experimental brain research,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
June 1985, Neuroscience,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
May 1970, Electroencephalography and clinical neurophysiology,
R Sánchez-Arroyos, and J M Gaztelu, and J Zaplana, and F Dajas, and E García-Austt
June 1970, Science (New York, N.Y.),
Copied contents to your clipboard!