A toxin that recognizes muscarinic acetylcholine receptors. Preparation and characterization of crystals suitable for structural analysis. 1993

R Ménez, and A Ducruix
Département d'Ingenierie et d'Etudes des Proteines, Gif-sur-Yvette, France.

Muscarinic toxin 2 from Dendroaspis angusticeps has been crystallized by vapour diffusion, in sodium acetate using sodium thiocyanate as a precipitant. Trigonal crystals (space group P3(1)21 or P3(2)21) have been obtained. The unit cell parameters are a = b = 64.2 A and c = 37.1 A. The presence of one molecule per asymmetric unit is estimated.

UI MeSH Term Description Entries
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012911 Snakes Limbless REPTILES of the suborder Serpentes. Serpentes,Ophidia,Snake
D018727 Muscarinic Antagonists Drugs that bind to but do not activate MUSCARINIC RECEPTORS, thereby blocking the actions of endogenous ACETYLCHOLINE or exogenous agonists. Muscarinic antagonists have widespread effects including actions on the iris and ciliary muscle of the eye, the heart and blood vessels, secretions of the respiratory tract, GI system, and salivary glands, GI motility, urinary bladder tone, and the central nervous system. Antimuscarinic,Antimuscarinic Agent,Antimuscarinic Agents,Cholinergic Muscarinic Antagonist,Muscarinic Antagonist,Antimuscarinics,Cholinergic Muscarinic Antagonists,Agent, Antimuscarinic,Agents, Antimuscarinic,Antagonist, Cholinergic Muscarinic,Antagonist, Muscarinic,Antagonists, Cholinergic Muscarinic,Antagonists, Muscarinic,Muscarinic Antagonist, Cholinergic,Muscarinic Antagonists, Cholinergic
D030162 Reptilian Proteins Proteins obtained from species of REPTILES. Reptile Proteins

Related Publications

R Ménez, and A Ducruix
November 1989, The Journal of biological chemistry,
R Ménez, and A Ducruix
April 2015, Journal of molecular recognition : JMR,
R Ménez, and A Ducruix
January 1980, Brain research bulletin,
R Ménez, and A Ducruix
June 2020, Molecules (Basel, Switzerland),
R Ménez, and A Ducruix
January 1995, The Journal of investigative dermatology,
R Ménez, and A Ducruix
March 1994, Annals of the New York Academy of Sciences,
R Ménez, and A Ducruix
January 1998, Journal of physiology, Paris,
R Ménez, and A Ducruix
January 1991, Journal of receptor research,
R Ménez, and A Ducruix
October 2001, Biology of reproduction,
Copied contents to your clipboard!