Electrical potential profile in rabbit ileum: role of rheogenic Na transport. 1977

R C Rose, and D L Nahrwold, and M J Koch

The electrical potential profile of rabbit ileum was investigated in vitro with the microelectrode technique. The transmural electrical potential difference (PD), designated psims, was immediately reduced by 60% upon cooling the tissue from 37 to 7 degrees C; the PD across the mucosal membrane (transmucosal PD, psimc) was simultaneously reduced by 37%. These electrical changes could not be attributed to alternations in either transmembrane ion concentration gradients or total tissue conductance. The psimc and psims may have substantial values even after the concentration gradients of Na and K across the cell membane are eliminated, provided that active transport mechanisms are still operative. Conversely, in the presence of approximately normal transmembrane ion concentration gradients, but when active transport mechanisms have been inhibited. psimc is reduced by 45% and psims is zero. These observations are consistent with a model of electrolyte transport in which psims and the normal transmembrane cation concentration gradients are established by rheogenic active transport of Na out of the cell. The psimc is generated both by rheogenic active Na transport and by cation concentration gradients which exist across the cell membrane. The Koefoed-Johnsen and Ussing model (Acta Physiol. Scand., 1958, vol. 42, p. 298) of electrolyte transport by epithelial cells does not adequately describe the electrical properties of ileum.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

R C Rose, and D L Nahrwold, and M J Koch
December 1977, Nature,
R C Rose, and D L Nahrwold, and M J Koch
May 1973, The Johns Hopkins medical journal,
R C Rose, and D L Nahrwold, and M J Koch
February 1977, The Journal of membrane biology,
R C Rose, and D L Nahrwold, and M J Koch
September 1975, The American journal of physiology,
R C Rose, and D L Nahrwold, and M J Koch
April 1986, The American journal of physiology,
R C Rose, and D L Nahrwold, and M J Koch
January 1974, The Journal of membrane biology,
R C Rose, and D L Nahrwold, and M J Koch
October 1970, The American journal of physiology,
R C Rose, and D L Nahrwold, and M J Koch
October 1973, The American journal of physiology,
R C Rose, and D L Nahrwold, and M J Koch
August 1991, The Journal of physiology,
Copied contents to your clipboard!