An electron microscopic immunogold analysis of developmental up-regulation of the blood-brain barrier GLUT1 glucose transporter. 1993

E M Cornford, and S Hyman, and W M Pardridge
Department of Neurology, UCLA School of Medicine.

Electron microscopy was used to quantitate blood-brain barrier (BBB) glucose transporters in newborn, 14-day-old suckling, 28-day-old weanling, and adult rabbits. A rabbit polyclonal antiserum to a synthetic peptide encoding the 13 C-terminal amino acids of the human erythrocyte glucose transporter (GLUT1) was labeled with 10-nm gold particle-secondary antibody conjugates and localized immunoreactive GLUT1 molecules in rabbit brain capillary endothelia. Three distinct populations of brain capillary profiles were identified in newborn rabbits: prepatent capillary buds, partially patent capillaries with highly amplified luminal membranes, and patent capillaries. Immunogold analyses indicated that the GLUT1 transporter abundance positively correlated with capillary developmental status. The mean number of gold particles per capillary profile increased at each developmental age examined, suggesting that developmental up-regulation of the BBB glucose transporter occurred in rabbits. GLUT1 immunoreactivity was three- to fourfold greater on the abluminal than luminal capillary membranes among all ages examined. Changes in the proportions of GLUT1 transporter were also seen, and possible reasons for the postnatal decrease in the percentage of cytoplasmic GLUT1 transporter are discussed. The numbers of cytoplasmic and membrane-associated immunogold particles increased with age. We conclude that regulatory modulations of BB glucose transport may be characterized by increases in BBB glucose transporter density with age and state of development. In addition, modulation of glucose transporter activity may be reflected by minor postnatal shifts of GLUT1 from cytoplasmic to membrane compartments, which can be demonstrated with quantitative immunogold electron microscopy.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

E M Cornford, and S Hyman, and W M Pardridge
September 2000, Brain research. Developmental brain research,
E M Cornford, and S Hyman, and W M Pardridge
January 1996, Journal of neural transmission. Supplementum,
E M Cornford, and S Hyman, and W M Pardridge
January 1998, Journal of neural transmission. Supplementum,
E M Cornford, and S Hyman, and W M Pardridge
July 1991, Proceedings of the National Academy of Sciences of the United States of America,
E M Cornford, and S Hyman, and W M Pardridge
July 2003, Investigative ophthalmology & visual science,
E M Cornford, and S Hyman, and W M Pardridge
August 2001, Neuroscience research,
E M Cornford, and S Hyman, and W M Pardridge
March 1994, Brain research. Molecular brain research,
E M Cornford, and S Hyman, and W M Pardridge
September 1999, Neuroscience research,
E M Cornford, and S Hyman, and W M Pardridge
January 2000, Journal of neural transmission. Supplementum,
Copied contents to your clipboard!