IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. 1993

D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
University Hospital Rudolf Virchow, Department of Dermatology, FU Berlin, Germany.

Normal melanocytes require a number of exogenous growth factors in contrast to most metastatic malignant melanomas. This investigation demonstrates that endogenously produced human IL-8 can act as an important growth factor for human melanoma cells. In the present study, six out of eight human melanoma cell lines tested secrete IL-8 protein into the culture supernatant. In two of these IL-8-secreting melanoma cell lines, SK-MEL 13 and SK-MEL 23, we have determined the IL-8 requirement for their proliferative capacity. These melanoma cell lines produced significant amounts of bioactive IL-8 as measured by the ELISA technique. Secretion of human IL-8 was inducible by IL-1 and by PMA. Human IL-8-specific mRNA was already detected in unstimulated melanoma cells. In addition, human IL-8-R mRNA could be detected for the first time in human melanoma cells. Exposure of the two melanoma cell lines in vitro to antisense oligonucleotides targeted against two different sites of human IL-8 mRNA-inhibited cell proliferation, colony formation in soft agar, and secretion of IL-8 protein into culture supernatant in a dose dependent fashion. Effects were reversible either by removal of the oligomers or by addition of exogenous IL-8 protein. In contrast, exposure to IL-8 sense probes or oligonucleotides in sense or antisense orientation specific for IL-7, TGF-alpha, TGF-beta, and MGSA had no such effect. A monospecific immune serum and two IL-8-specific mAb were also capable of inhibiting melanoma cell proliferation in the same manner. These results provide strong evidence for an autocrine IL-8 synthesis and for an IL-8-dependent proliferation in a subgroup of human melanomas. Furthermore, they suggest that IL-8 may play a role not only in immunomodulation but also in melanoma progression and metastatic spread.

UI MeSH Term Description Entries
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense

Related Publications

D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
January 2000, Cytokine,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
April 2001, The Journal of pathology,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
August 1982, Cancer research,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
January 1999, Cancer research,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
December 1999, European cytokine network,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
March 1995, Clinical & experimental metastasis,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
August 1995, Journal of cellular physiology,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
September 1996, Journal of immunology (Baltimore, Md. : 1950),
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
January 2000, Oncology research,
D Schadendorf, and A Möller, and B Algermissen, and M Worm, and M Sticherling, and B M Czarnetzki
February 2000, Muscle & nerve,
Copied contents to your clipboard!